首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >LBM SIMULATIONS OF DISPERSED MULTIPHASE FLOWS IN A CHANNEL: ROLE OF A PRESSURE POISSON EQUATION
【24h】

LBM SIMULATIONS OF DISPERSED MULTIPHASE FLOWS IN A CHANNEL: ROLE OF A PRESSURE POISSON EQUATION

机译:通道中分散多相流的LBM模拟:压力泊松方程的作用

获取原文
获取外文期刊封面目录资料

摘要

In recent years, Lattice Boltzmann Methods (LBM's) have emerged as a popular class of paradigms for the simulation of multiphase flows. These methods rely on discretized Boltzmann equations to represent the individual multiphase species. Among LBM's advantages is its ability to explicitly account for interfacial physics and its local streaming/collision operations which make it ideally suited for parallelization. However, one drawback of LBM is in the simulation of incompressible multiphase flow, whereby the density should remain constant along material characteristics. Because LBM uses a state equation to relate pressure and density, incompressibility cannot be enforced directly. This is true even for incompressible single-phase LBM calculations, in which a finite density drop is needed to drive through the flow. This is also the case for compressible Navier-Stokes algorithms when applied to low Mach number flow. To mitigate compressibility effects, LBM can be used in low Mach regimes which should keep material density variation small. In this work, we demonstrate that the assumption of low Mach number is not sufficient in multiphase internal flows. In such flows, in the absence of a Pressure Poisson constraint to enforce incompressibility, LBM predicts a compressible solution whereby a density gradient must develop to conserve mass. Imposition of inflow/outflow boundary conditions or a mean body force can ensure that mass is conserved globally, thereby quelling density variation. The primary numerical problem we study is the deformation of a liquid droplet immersed in another fluid. Though LBM is not typically conducted with a pressure Poisson equation, we incorporate one in this work and demonstrate that its inclusion can significantly lower the density variation in view of maintaining an incompressible flow.
机译:近年来,格子波尔兹曼方法(LBM's)成为一种流行的用于模拟多相流的范例。这些方法依靠离散的Boltzmann方程来表示各个多相物质。 LBM的优点之一是能够明确考虑界面物理的能力及其本地流/冲突操作,因此非常适合并行化。但是,LBM的一个缺点是无法压缩的多相流的模拟,因此密度应沿材料特性保持恒定。由于LBM使用状态方程来关联压力和密度,因此无法直接强制执行不可压缩性。即使对于不可压缩的单相LBM计算也是如此,在这种计算中,需要有限的密度下降来驱动流。当可压缩的Navier-Stokes算法应用于低马赫数流时,也是如此。为了减轻可压缩性的影响,可以在低马赫数状态下使用LBM,这应保持较小的材料密度变化。在这项工作中,我们证明了低马赫数的假设在多相内部流中是不够的。在这样的流动中,在没有压力泊松约束来增强不可压缩性的情况下,LBM预测了可压缩的解决方案,因此必须发展密度梯度以节省质量。施加流入/流出边界条件或平均体力可以确保总体上守恒,从而抑制密度变化。我们研究的主要数值问题是浸没在另一种流体中的液滴的变形。尽管LBM通常不是用压力泊松方程进行的,但我们在其中结合了一个方程,并证明考虑到保持不可压缩的流动,将其包含在内可以显着降低密度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号