首页> 外文会议>Conference on nanomechanical testing in materials research and development >DEEP-LEARNING ASSISTED DAMAGE OBSERVATIONS ON THE MICROSCALE - A NEW VIEWPOINT ON MICROSTRUCTURAL DEFORMATION, FRACTURE AND DECOHESION PROCESSES
【24h】

DEEP-LEARNING ASSISTED DAMAGE OBSERVATIONS ON THE MICROSCALE - A NEW VIEWPOINT ON MICROSTRUCTURAL DEFORMATION, FRACTURE AND DECOHESION PROCESSES

机译:微观学习辅助损伤观测 - 微观结构变形,裂缝和脱粘过程的新观点

获取原文

摘要

In recent years, state-of-the-art micromechanical systems have given researchers the ability to observe deformation processes in-situ. While this technology enables a site-specific observation, this very achievement can turn into a major limitation: To deduct conclusions about the relevance of specific processes for the bulk material, a larger field of view than typically possible in microscale observations is often required. Starting with the fundamental microstructural damage mechanisms in multi-phase microstructures - typically the fracture of brittle constituents and the ductile decohesion of various types of interfaces - a framework for recognition and automated classification of damage sites has been developed. This system enables the microscale observation of a significantly enlarged area up to the order of 1 mm~2, in-situ or post-mortem. We applied high-resolution SEM panoramic imaging on in-situ deformed, miniaturized specimens under uni- and biaxial tension. Deep neural networks act as a tool for the automated recognition, tracking and classification of damage sites, according to the prevailing micromechanical mechanisms of local damage formation. Classifying thousands of relevant sites in seconds helps unravelling new insights about damage intensity, dominance of specific mechanisms as well as microstructural preferences for void initiation by introducing a statistically relevant data set. The proposed method has been developed and tested on dual-phase steels as a study material and expanded for other materials with high mechanical contrast. Thus, the proposed framework delivers a powerful tool to couple highly-resolved in-situ observations of micromechanical processes to statistically and technologically relevant, large-scale observations, yielding a deeper understanding of the interplay of microscale deformation, damage initiation and evolution processes.
机译:近年来,最先进的微机械系统已经赋予研究人员观察原位变形过程的能力。虽然该技术能够实现特定于站点的观察,但这非常成就可以变成一个主要限制:延伸到散装材料的特定过程的相关性的结论,通常需要比通常可以在微尺度观测中的更大的视野。从多相微观结构中的基本微观结构损伤机制开始 - 通常已经开发出脆性成分和各种类型界面的延展性脱髓区的骨折。已经开发了一种识别和自动分类损伤部位的框架。该系统使微观观察明显扩大的区域,直到1mm〜2,原位或验尸的阶。我们在单轴和双轴张力下应用了在原位变形,小型化标本的高分辨率SEM全景成像。根据局部损伤形成的主要微机械机制,深神经网络作为自动识别,跟踪和分类的工具。分类数千个相关网站以秒为单位,有助于通过引入统计相关的数据集来解除对损伤强度,特定机制的主导地位以及微观结构偏好的新见解。该方法已经开发并测试了双相钢作为研究材料,并为具有高机械对比的其他材料扩展。因此,所提出的框架提供了一个强大的工具,可以在统计上和技术相关,大规模观测中耦合高度解决的原位观察,从而更深入地了解微观变形,损伤启动和演化过程的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号