首页> 外文会议>Conference on nanomechanical testing in materials research and development >IN SITU NANO-INDENTATION OF AU CRYSTALS IMAGED BY BRAGG COHERENT X-RAY DIFFRACTION
【24h】

IN SITU NANO-INDENTATION OF AU CRYSTALS IMAGED BY BRAGG COHERENT X-RAY DIFFRACTION

机译:布拉格相干X射线衍射成像的金纳米晶的原位纳米识别

获取原文

摘要

The mechanical properties of micro- and nanostructures were demonstrated to vary significantly from their bulk counterparts. Despite numerous studies, plasticity at the nanoscale is, however, not fully understood yet. In situ experiments are perfectly suited for the fundamental understanding of the onset of dislocation nucleation. Recently, we developed a scanning force microscope (SFINX) which is compatible with 3rd generation synchrotron beamlines allowing for in situ nano-mechanical tests in combination with nano-focused X-ray diffraction [1] such as coherent X-ray diffraction imaging (CDI). This novel lensless imaging method retrieves the sample scattering function from a coherent X-ray diffraction data set using computational inversion algorithms, thus determining the phase of the scattered amplitude, which is not directly measured by a detector. In Bragg condition, the retrieved phase is directly related to the displacement field and, hence to the strain within a crystal. Our previous BCDI studies on indented Au crystals demonstrated the capability to imaging a single prismatic loop induced by nano-indentation and trapped inside the crystal [2]. Since any movement of diffractometer motors may induce vibrations that eventually lead to damaging the nano-crystal under load, ordinary rocking scans are not suitable for recording 3D reciprocal space maps in situ. Scanning the energy of the incident X-ray beam instead allows for probing the intensity distribution in reciprocal space without any detrimental vibrations [2]. Here, we report about the in situ nano-indentation of Au crystals with and without containing a twin boundary parallel to the crystal-substrate interface where the evolution of both strain and defects was imaged by multi-wavelength (mw) BCDI. Figure 1(a) shows the electron densities for two parts of a twinned Au nanocrystal reconstructed from mw-BCDPs measured at the Au 200 Bragg peaks. The phase, which is directly related to the displacement field inside the structure, is presented in Fig. 1(b) for a gold crystal during nano-indentation allowing for following the evolution of the morphology, the strain field, and dislocations. With increasing applied mechanical load, defects, probably prismatic dislocation loops, appear at about half-height of the indented crystal, which disappear after unloading [4]. To the best of our knowledge, this is the first time that mw-BCDI has been successfully employed during in situ experiments providing direct insight into the plasticity at the nanoscale and, in particular, the onset of defect nucleation.
机译:事实证明,微结构和纳米结构的机械性能与整体结构相比有显着差异。尽管进行了大量研究,但是,尚未完全了解纳米级的可塑性。原位实验非常适合对位错成核的发生有基本的了解。最近,我们开发了一种扫描力显微镜(SFINX),它与第三代同步加速器射线束兼容,可以与纳米聚焦X射线衍射[1]如相干X射线衍射成像(CDI)结合进行原位纳米机械测试。 )。这种新颖的无透镜成像方法使用计算反演算法从相干X射线衍射数据集中检索样本散射函数,从而确定散射振幅的相位,而该振幅不会被检测器直接测量。在布拉格条件下,恢复的相位与位移场直接相关,因此与晶体内的应变直接相关。我们先前对压痕金晶体的BCDI研究证明了能够成像由纳米压痕引起并陷在晶体内部的单个棱柱环的能力[2]。由于衍射仪电机的任何运动都可能引起振动,最终导致在负载下破坏纳米晶体,因此普通的摇摆扫描不适用于原位记录3D倒数空间图。相反,扫描入射X射线束的能量可以探测相互空间中的强度分布,而没有任何有害的振动[2]。在这里,我们报道了具有和不具有平行于晶体-衬底界面的孪晶边界的Au晶体的原位纳米压痕,其中应变和缺陷的演化都通过多波长(mw)BCDI成像。图1(a)显示了从mw-BCDPs在Au 200 Bragg峰处测得的孪晶Au纳米晶体的两部分的电子密度。图1(b)中显示了金纳米晶压痕过程中与晶体内部位移场直接相关的相位,从而可以跟踪形貌,应变场和位错的演变。随着施加的机械载荷的增加,缺陷,可能是棱柱状的位错环,出现在凹进的晶体的大约一半高度处,在卸载后消失了[4]。据我们所知,这是首次在原位实验中成功使用mw-BCDI,以提供对纳米级可塑性的直接见解,尤其是缺陷成核的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号