首页> 外文会议>Conference on Priority Program Software for Exascale Computing >GROMEX: A Scalable and Versatile Fast Multipole Method for Biomolecular Simulation
【24h】

GROMEX: A Scalable and Versatile Fast Multipole Method for Biomolecular Simulation

机译:GROMEX:用于生物分子模拟的可扩展且通用的快速多极方法

获取原文

摘要

Atomistic simulations of large biomolecular systems with chemical variability such as constant pH dynamic protonation offer multiple challenges in high performance computing. One of them is the correct treatment of the involved electrostatics in an efficient and highly scalable way. Here we review and assess two of the main building blocks that will permit such simulations: (1) An electrostatics library based on the Fast Multipole Method (FMM) that treats local alternative charge distributions with minimal overhead, and (2) A λ-dynamics module working in tandem with the FMM that enables various types of chemical transitions during the simulation. Our λ-dynamics and FMM implementations do not rely on third-party libraries but are exclusively using C++ language features and they are tailored to the specific requirements of molecular dynamics simulation suites such as GROMACS. The FMM library supports fractional tree depths and allows for rigorous error control and automatic performance optimization at runtime. Near-optimal performance is achieved on various SIMD architectures and on GPUs using CUDA. For exascale systems, we expect our approach to outperform current implementations based on Particle Mesh Ewald (PME) electrostatics, because FMM avoids the communication bottlenecks caused by the parallel fast Fourier transformations needed for PME.
机译:具有化学可变性(例如恒定的pH动态质子化)的大型生物分子系统的原子模拟对高性能计算提出了多个挑战。其中之一是以有效且高度可扩展的方式正确处理所涉及的静电。在这里,我们回顾和评估将允许进行这种模拟的两个主要构件:(1)基于快速多极方法(FMM)的静电库,该静电库以最小的开销处理局部替代电荷分布,以及(2)λ动力学与FMM协同工作的模块,可在模拟过程中实现各种类型的化学转变。我们的λ动力学和FMM实现不依赖第三方库,而是完全使用C ++语言功能,并且针对分子动力学仿真套件(例如GROMACS)的特定要求进行了量身定制。 FMM库支持分数树深度,并允许在运行时进行严格的错误控制和自动性能优化。在各种SIMD架构和使用CUDA的GPU上均达到了近乎最佳的性能。对于亿亿级系统,我们希望我们的方法能胜过基于粒子网格Ewald(PME)静电的当前实现,因为FMM避免了PME所需的并行快速傅立叶变换所引起的通信瓶颈。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号