首页> 外文会议>Annual AHS international forum and technology display >Effect of Rotor Geometry on UAV-Scale Cycloidal Rotor Hover Performance
【24h】

Effect of Rotor Geometry on UAV-Scale Cycloidal Rotor Hover Performance

机译:转子几何形状对无人机标度摆线转子悬停性能的影响

获取原文

摘要

This paper focuses on systematic time-averaged thrust and power measurements to characterize the effect of rotor geometry on the performance of a cycloidal rotor operating at Reynolds numbers between 100,000 and 300,000. A cycloidal rotor is a revolutionary horizontal-axis propulsion device that has proven to benefit from increased maneuverability and aerodynamic efficiency at micro air vehicle (MAV) scales. The current study aims to investigate cycloidal rotor performance at significantly larger UAV-scales. Towards this, experiments were conducted for a range of rotational speeds across different blade pitch amplitudes for rotor configurations with varying airfoils, blade spans, chord-by-radius ratios, and number of blades. The study found that the optimal pitch amplitude for symmetric pitch kinematics was highly dependent on the configuration due to changes in rotor inflow and flow curvature effects. An airfoil thickness as high as 25% of chord was capable of efficiently generating thrust and thicker airfoils provide efficient operation over a wider range of pitch amplitudes. Changing the blade span showed negligible change in thrust and power per unit area and power loading. Changing the chord-by-radius ratio resulted in increases in thrust at a fixed speed and power loading up to a current optimal ratio of 0.66. Increasing number of blades resulted in a steep decrease in thrust per unit blade area. Examining all of the tested configurations allowed for an optimal solidity range to be found of between 0.30 and 0.40. Based on the 31 unique configurations tested at 6 pitch amplitudes each in the present study, at an operating Reynolds number of 200,000, the optimal cycloidal rotor configuration had a chord-by-radius ratio of 0.66, 3 blades featuring a blade aspect ratio (span/chord) of 4 and a NACA 0020 airfoil, rotor aspect ratio (span/diameter) of 1.33 and pitch amplitude of 40 deg and produced a FM of 0.6.
机译:本文着重于系统时间平均推力和功率测量,以表征转子几何形状对以100,000至300,000雷诺数工作的摆线转子性能的影响。摆线转子是一种革命性的水平轴推进装置,已被证明可从微型航空器(MAV)规模的机动性和空气动力效率中受益。当前的研究旨在调查摆线转子在较大的无人机规模下的性能。为此,针对具有不同翼型,叶片跨度,弦半径比和叶片数量的转子配置,针对不同叶片螺距幅度的一系列转速进行了实验。研究发现,由于转子流入和流动曲率效应的变化,对称桨距运动学的最佳桨距幅度高度依赖于配置。翼弦厚度高达弦的25%能够有效地产生推力,而较厚的翼型则可在更宽的俯仰幅度范围内提供有效的操作。改变叶片跨度显示出每单位面积的推力和功率以及功率负载的变化可忽略不计。改变弦半径比会导致固定速度下的推力增加,并且功率加载达到当前的最佳比率0.66。叶片数量的增加导致单位叶片面积推力的急剧下降。检查所有测试的配置,可以找到介于0.30和0.40之间的最佳硬度范围。基于本研究中以6个螺距幅度测试的31种独特配置,在雷诺数为200,000的情况下,最佳摆线转子配置的弦半径比为0.66,3个叶片的叶片纵横比(跨度) / chord)为4,NACA 0020机翼,转子长宽比(跨度/直径)为1.33,俯仰幅度为40度,并且FM为0.6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号