首页> 外文会议>North American Thermal Analysis Society conference >Impact of Evolved Gas on the Reaction Kinetics in Inorganic Solid-Gas Systems
【24h】

Impact of Evolved Gas on the Reaction Kinetics in Inorganic Solid-Gas Systems

机译:气体逸出对无机固体气体系统反应动力学的影响

获取原文

摘要

The effect of the partial pressure of evolved gas (p(gas)) on the kinetics of reversible reactions in solid-gas systems has long been studied for gaining more rigorous kinetic descriptions of many important reactions [1]. Three different phenomena have been observed as being caused by the influence of evolved gas. Generally, the effect of p(gas) on the reversible thermal decomposition of inorganic solids is the normal effect with respect to the chemical equilibrium, but the inverse effect is also observed in some selected reaction systems. In the thermal decomposition of some basic carbonates [2,3] and hydrogen carbonates [4,5], the normal and inverse effects are observed with respect to evolved CO2 and water vapor, respectively. The evolved gas also influences on the kinetics of the subsequent reaction in a scheme of consecutive reactions regulated by the physico-geometrical constraints. Typical examples are the thermally induced carbonation of alkaline and alkaline earth hydroxides in a CO2 atmosphere [6], in which the water vapor produced by the primary reaction catalyses the subsequent carbonation reaction. In this presentation, the mechanistic interpretation and possible kinetic description of these three different types of the p(gas) effects are discussed by reviewing our recent results. Concerning the normal effect of p(gas) on the reversible thermal decomposition of solids, the theoretical background of the possible accommodation function of p(gas) to be introduced into the fundamental kinetic equation is discussed on the basis of classical nucleation and interface reaction theories. Using an accommodation function a(p(gas), Peq(T)), an universal kinetic approach to the thermal decomposition of solids under different p(gas) is demonstrated. The inverse effect of p(gas) is described by focusing on the catalytic effect of water vapor on the crystal growth of the product solids in the surface product layer and as exemplified by the formation process of nano-sized metal and metal oxides via the thermal decomposition of precursors [7]. For the catalytic effect of the evolved gas on the subsequent chemical reaction, the kinetic feature is revealed through the kinetic analysis of the consecutive reactions in solids. The catalytic action is discussed based on the physico-geometrical reaction mechanism, providing a suggestion for the effective CO2 capture by the alkaline and alkaline earth oxides.
机译:长期以来,人们一直在研究析出气体的分压(p(gas))对固-气系统中可逆反应动力学的影响,以获得对许多重要反应的更严格的动力学描述[1]。已经观察到由逸出气体的影响引起的三种不同现象。通常,就化学平衡而言,p(气体)对无机固体可逆热分解的影响是正常的影响,但在某些选定的反应系统中也观察到了相反的影响。在某些碱性碳酸盐[2,3]和碳酸氢盐[4,5]的热分解中,分别观察到放出的二氧化碳和水蒸气的正反作用。在由物理几何约束约束的连续反应方案中,放出的气体还会影响后续反应的动力学。典型的例子是在CO2气氛中热诱导的碱金属和碱土金属氢氧化物的碳酸化反应[6],其中一级反应产生的水蒸气催化后续的碳酸化反应。在此演示文稿中,通过回顾我们最近的结果讨论了这三种不同类型的p(gas)效应的机理解释和可能的动力学描述。关于p(气体)对固体可逆热分解的正作用,在经典成核和界面反应理论的基础上,讨论了将p(气体)可能的调节函数引入基本动力学方程的理论背景。 。使用调节函数a(p(gas),Peq(T)),展示了一种通用动力学方法来研究不同p(gas)下固体的热分解。通过关注水蒸气对表面产物层中产物固体晶体生长的催化作用并以纳米级金属和金属氧化物通过热形成过程为例来描述p(gas)的反作用。前体的分解[7]。对于放出的气体对后续化学反应的催化作用,通过对固体中连续反应的动力学分析揭示了动力学特征。基于物理-几何反应机理讨论了催化作用,为碱金属和碱土金属氧化物有效捕获CO2提供了建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号