首页> 外文会议>North American Thermal Analysis Society conference >Multiscale characterization of polymer dynamics in carbon nanotube grafted fiber-reinforced polymer composites
【24h】

Multiscale characterization of polymer dynamics in carbon nanotube grafted fiber-reinforced polymer composites

机译:碳纳米管接枝纤维增强聚合物复合材料中聚合物动力学的多尺度表征

获取原文

摘要

Carbon nanotubes (CNTs) easily form percolated networks when dispersed into polymers that can improve mechanical, electrical and thermal properties. Dispersing large mass fractions of high-aspect ratio CNTs into fiber-reinforced composites is much more challenging. The microscale fibers lead to CNT agglomeration that results in meager improvements to the interlaminar and bulk properties. This limitation can be overcome by directly grafting CNTs onto fiber surfaces before the resin infusion process. In the current study, this has been accomplished by functionalizing the CNTs using a hyperbranched polyethyleneimine (PEI) and then depositing them onto glass fiber surfaces under the influence of an electric field by a process known as electrophoretic deposition (EPD) [1]. The amine functionality enables the formation of primary bonds between the CNTs and the fiber/polymer surfaces, while providing a net-positive charge necessary for the EPD process. Hierarchical CNT-composites manufactured by direct fiber grafting display superior load transfer capabilities and show improvements in the electrical properties as compared to plain glass fiber composites. With potential application in aerospace industries, it is important to understand the effect of interfacial CNT networks on the polymer viscoelasticity in these materials. Multiscale characterization of viscoelastic properties and polymer dynamics was achieved by using both bulk (dynamic mechanical thermal analysis) and nanoscale (neutron scattering experimentation) measurements. Viscoelastic properties were measured by temperature-frequency scans, and the results were shifted across a broad range of relaxation times (10-5 s - 105 s) using time-temperature superposition principle [2], [3]. On the other hand, high-flux backscattering (HFBS) experiments were carried out to understand the mean square displacement of H atoms that are associated with the polymer relaxation dynamics at much smaller scales(
机译:碳纳米管(CNT)分散到可以改善机械,电气和热性能的聚合物中时,很容易形成渗滤网络。将高纵横比的CNT的大部分分散到纤维增强的复合材料中更具挑战性。微米级纤维导致CNT团聚,从而导致层间和整体性能的微不足道的改善。可以通过在树脂注入过程之前将CNT直接接枝到纤维表面上来克服此限制。在当前的研究中,这是通过使用超支化聚乙烯亚胺(PEI)官能化CNT,然后通过称为电泳沉积(EPD)的方法将它们在电场的作用下沉积在玻璃纤维表面上来实现的[1]。胺官能团能够在CNT与纤维/聚合物表面之间形成伯键,同时提供EPD工艺所需的净正电荷。与普通玻璃纤维复合材料相比,通过直接纤维接枝生产的分层CNT复合材料显示出优异的负载转移能力,并显示出电气性能的改善。随着在航空航天工业中的潜在应用,重要的是要了解界面CNT网络对这些材料中聚合物粘弹性的影响。通过使用体积(动态机械热分析)和纳米级(中子散射实验)测量,可以实现粘弹性和聚合物动力学的多尺度表征。通过温度-频率扫描测量粘弹性,并使用时间-温度叠加原理[2],[3]在宽范围的弛豫时间(10-5 s-105 s)内转换结果。另一方面,进行了高通量反向散射(HFBS)实验,以了解在更小的尺度下与聚合物弛豫动力学相关的H原子的均方位移(

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号