首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Computations of High Enthalpy Shock Propagation in Electric Arc Shock Tube (EAST) at NASA Ames
【24h】

Computations of High Enthalpy Shock Propagation in Electric Arc Shock Tube (EAST) at NASA Ames

机译:美国宇航局埃姆斯分校的电弧激波管(EAST)中高焓激波传播的计算

获取原文

摘要

Fluid dynamic computations are performed to predict the post-shock gas properties for high enthalpy earth entry conditions experimented at the NASA EAST facility. The inherent disparity of length- and time-scales, and a highly stiff reaction dynamics necessitate the use of implicit solvers to make such simulations tractable. The fully coupled, linearized system of equations for EAST flow is solved in the US3D flow solver using the approximate iterative implicit data-parellal line relaxation (DPLR) or full matrix data parellal point-relaxation (FMDP) methods, and with a preconditioned GMRes based linear system solver. These calculations are done in both, a fixed- and a moving-frame of reference. Substantial improvements are realized in the computational cost and accuracy by solving the flow in a moving-frame traveling with the shock. The FMDP method with sufficient sub-iterations during the off-diagonal relaxation process gives accuracy similar to the GMRes based solver, while significantly reducing the computation cost. A carefully designed non-uniform grid is employed with a periodic tracking of the shock front location, and the grid resoultion in the computational domain is such that the regions near strong discontinuities and large viscous gradients are well resolved at all times. Additionally, the solver framework in US3D is improvized to mimic high-temperature kinetics and mitigate numerical instabilities accumulated during the lengthy time-integration process for this high speed shock propagation in a long tube. The catalytic recombination of the ions by the cold wall along with accurately linearized mass diffusion fluxes ensures a realistic behavior of the ionized species and enhances the numerical stability of the linear system. The 2D axisymmetric EAST shock tube flow is hence computed in a time-accurate, yet computationally inexpensive, manner. The numerical solution successfully captures the key flow physics and post-shock electron density predictions are consistent with the experimental observations.
机译:进行流体动力学计算,以预测在美国国家航空航天局(ASTA)设施试验的高焓土进入条件下的震后气体特性。长度和时间尺度的固有差异以及高度僵化的反应动力学,必须使用隐式求解器才能使此类模拟变得易于处理。在US3D流量求解器中,使用近似迭代隐式数据-平行线松弛(DPLR)或全矩阵数据平行点松弛(FMDP)方法,以及基于GMRes的预处理,对EAST流的完全耦合的线性化方程组进行求解线性系统求解器。这些计算是在固定参考框架和移动参考框架中进行的。通过解决伴随冲击而行进的移动框架中的流动,可显着提高计算成本和准确性。 FMDP方法在非对角弛豫过程中具有足够的子重复项,其精度类似于基于GMRes的求解器,同时显着降低了计算成本。使用精心设计的非均匀网格并定期跟踪激波前部位置,并且网格在计算域中的作用是使强不连续性和大粘性梯度附近的区域始终得到良好解析。此外,US3D中的求解器框架被简化为模仿高温动力学并减轻了在长时间积分过程中为长管中的这种高速冲击传播而累积的数值不稳定性。冷壁对离子的催化重组以及精确的线性化质量扩散通量可确保离子化物质的真实行为,并增强线性系统的数值稳定性。因此,以时间精确但计算便宜的方式来计算2D轴对称EAST激波管流量。数值解成功地捕获了关键的流动物理学,并且震荡后的电子密度预测与实验观察结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号