首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Large-Eddy Simulations of Flow Control Effects of a DBD Plasma Actuator at Various Burst Frequencies on a Dynamic Flowfield around a Pitching NACA0012 Airfoil at Reynolds Number of 256,000
【24h】

Large-Eddy Simulations of Flow Control Effects of a DBD Plasma Actuator at Various Burst Frequencies on a Dynamic Flowfield around a Pitching NACA0012 Airfoil at Reynolds Number of 256,000

机译:雷诺数为256,000的俯仰NACA0012翼型周围动态流场上不同爆破频率下DBD等离子执行器流量控制效果的大涡模拟。

获取原文

摘要

Large-eddy simulations are conducted to investigate the control effects of a dielectric barrier discharge plasma actuator on a dynamic flowfield with a Reynolds number of 2.56 × 10~5 and a reduced frequency of 0.02π. The objective flowfields include dynamic stall phenomenon, flow separation and reattachment. First the flowfield without control is investigated and it is found that dynamic stall process can be classified into five stages; formation of a laminar separation bubble, breakdown of the laminar separation bubble which triggers formation of a dynamic stall vortex, convection of the dynamic stall vortex, full stall from the leading edge, and recovery to the attached state. Then the control effects with three burst frequencies (F~+) of 0.5, 6, and 50 in nondimensionalized value are investigated. The DBD plasma actuator successfully enhances the cycle-integrated aerodynamic performances of the airfoil and major control effects are summarized into three; delay of dynamic stall, enhancement of aerodynamic forces during full stall by large vortices, and promotion of reattachment. The most effective burst frequency for each control effect differs from each other, showing that the best case for delaying the dynamic stall onset is the case with F~+ of 50 while the best case for promoting the reattachment is the case with F~+ of 6. The results show that the promoting the reattachment is effective for improving the cycle-integrated net damping and shortening the duration under the stall. For further improvement, the current results give a strong prospect of a closed-loop control in which F~+ is adapted to the change in the flowfleld.
机译:进行大涡模拟,以研究介电势垒放电等离子体致动器对雷诺数为2.56×10〜5,降频为0.02π的动态流场的控制效果。客观流场包括动态失速现象,流动分离和重新附着。首先研究了无控制流场,发现动态失速过程可分为五个阶段。层流分离气泡的形成,层流分离气泡的破裂会触发动态失速涡流的形成,动态失速涡流的对流,从前缘完全失速并恢复到附着状态。然后研究了在无量纲值下三个突发频率(F〜+)分别为0.5、6和50的控制效果。 DBD等离子致动器成功地增强了机翼的循环综合空气动力性能,主要控制效果归纳为三个;延缓动态失速,在大失速期间完全失速时增加空气动力,并促进重新附着。每种控制效果的最有效猝发频率互不相同,这表明延迟动态失速开始的最佳情况是F〜+为50的情况,而促进重新附着的最佳情况是F〜+为50的情况。 6.结果表明,促进重新连接对于改善循环积分净阻尼和缩短失速下的持续时间是有效的。为了进一步改进,目前的结果为闭环控制提供了广阔的前景,其中F〜+适合于流场的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号