首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >An Adaptive Mesh Refinement Approach for Viscous Fluid-Structure Computations Using Eulerian Vertex-Based Finite Volume Methods
【24h】

An Adaptive Mesh Refinement Approach for Viscous Fluid-Structure Computations Using Eulerian Vertex-Based Finite Volume Methods

机译:基于欧拉顶点的有限体积方法的粘性流体结构自适应网格细化方法

获取原文

摘要

Embedded Boundary Methods (EBMs) for the solution of fluid and Fluid-Structure Interaction (FSI) problems are typically formulated in the Eulerian setting, which makes them especially attractive when the structure undergoes large structural motions and/or deformations, or topological changes. For viscous problems however, they suffer from a major drawback in that they do not track the boundary layers that form around embedded obstacles and therefore do not maintain them efficiently resolved. In this paper, this drawback is overcome using an Adaptive Mesh Refinement (AMR) approach based on the time-dependent distance from a computational cell to the nearest embedded surface which may deform and evolve in time. The proposed approach features a fast predictor-corrector algorithm for updating the distance to the wall that is particularly efficient for explicit-explicit time-stepping discretizations. These are preferred for highly nonlinear FSI computations such as those associated, for example, with the simulation of parachute inflation dynamics. For vertex-based finite volume computations performed on dual cells, AMR gives rise to non-conforming mesh configurations that complicate the semi-discretization process. The proposed AMR approach addresses this issue by appropriately managing the construction and destruction of edges, primal elements and dual cells, so that mesh conformity can be explicitly enforced during the mesh adaptation process. It is illustrated here with preliminary results obtained for the simulation of the inflation of a membrane in a supersonic airstream using the EBM for FSI computations known as FIVER (Finite Volume method with Exact two-material Riemann problems).
机译:解决流体和流体-结构相互作用(FSI)问题的嵌入式边界方法(EBM)通常在欧拉环境中制定,这使它们在结构经历大的结构运动和/或变形或拓扑变化时特别有吸引力。但是,对于粘性问题,它们的主要缺点是它们无法跟踪围绕嵌入式障碍物形成的边界层,因此无法保持有效地解决它们。在本文中,基于从计算单元到可能随时间变形和发展的从计算单元到最近嵌入表面的时间相关距离,使用自适应网格细化(AMR)方法克服了此缺点。所提出的方法具有用于更新到墙的距离的快速预测器-校正器算法的功能,这对于显式显式时间步离散化特别有效。对于高度非线性的FSI计算(例如与降落伞充气动力学模拟相关联的计算),它们是首选。对于在双像元上执行的基于顶点的有限体积计算,AMR产生了不合格的网格配置,使半离散化过程变得复杂。提出的AMR方法通过适当地管理边缘,原始元素和双像元的构造和破坏来解决此问题,以便可以在网格自适应过程中明确地强制执行网格一致性。此处用初步结果进行了说明,该结果是使用EBM进行FSI计算的超音速气流中膜膨胀的模拟,称为FIVER(有限体积法,具有精确的两种材料黎曼问题)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号