首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >The Performance Evaluation of an Improved Finite Volume Method that Solves the Fluid Dynamic Equations
【24h】

The Performance Evaluation of an Improved Finite Volume Method that Solves the Fluid Dynamic Equations

机译:求解流体动力学方程的改进有限体积法的性能评估

获取原文
获取外文期刊封面目录资料

摘要

One of the most important goals of this research effort is to improve the efficiencies of computational fluid dynamic (CFD) tools by focusing on the development of a robust and accurate numerical framework capable of solving the Navier-Stokes Equations under a wide variety of initial and boundary conditions. This new scheme, called the Integro-Differential Scheme (IDS), has several favorable qualities. For instance, the scheme is developed based on a unique combination of the differential and integral forms of the Navier-Stokes Equations (NSE). In this paper, the differential form of the NSE is used for explicit time marching and the integral form is used for spatial flux evaluations. As such, the scheme has the potential to accurately capture the complex physics of fluid flows. In addition, the Method of Consistent Averages (MCA) numerical procedure directly provides continuity of the numerical flux quantities rather than manipulating the primitive flowficld variables to ensure continuity. Coupled temporal and spatial analyses of the mass, momentum, and energy fluxes are considered at two major locations; namely, at the center of the numerical control volume, and at each of the surfaces making up an elementary control volume. It is also of interest to note that the IDS procedure developed herein is based on two fundamental types of control volumes. This paper elaborates on the development of the IDS procedure and presents the results of its implementation on three different frameworks, such as 1D, quasi 1D and 2D flow problems. The problems of interest to this study are the supersonic cavity flow and the shock wave turbulent boundary layer interaction. A careful analysis of the results generated from the use of the IDS procedure confirms its predictive capabilities and its potential to solve a variety of fluid dynamics problems.
机译:这项研究工作的最重要目标之一是通过专注于开发能够在各种初始值和初始值下求解Navier-Stokes方程的健壮且准确的数值框架的开发,从而提高计算流体动力学(CFD)工具的效率。边界条件。这种称为“积分微分方案”(IDS)的新方案具有几个良好的品质。例如,该方案是基于Navier-Stokes方程(NSE)的微分形式和积分形式的独特组合而开发的。在本文中,NSE的微分形式用于显式时间行进,而积分形式用于空间通量评估。因此,该方案具有准确捕获流体流动的复杂物理现象的潜力。此外,一致性平均方法(MCA)数值过程直接提供了数值通量的连续性,而不是操纵原始flowficld变量来确保连续性。在两个主要位置考虑了对质量,动量和能量通量的时间和空间耦合分析。即,在数控体积的中心以及构成基本控制体积的每个表面上。还需要注意的是,本文开发的IDS程序基于两种基本类型的控制量。本文详细介绍了IDS程序的开发,并介绍了在三个不同的框架(例如1D,准1D和2D流问题)上实施该程序的结果。这项研究感兴趣的问题是超声速腔流和激波湍流边界层相互作用。对使用IDS程序产生的结果进行的仔细分析证实了其预测能力以及解决各种流体动力学问题的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号