首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >Numerical Simulation of Control Strategies at Mutriku Wave Power Plant
【24h】

Numerical Simulation of Control Strategies at Mutriku Wave Power Plant

机译:Mutriku波电厂的控制策略数值模拟

获取原文

摘要

In order to de-risk wave energy technologies and bring confidence to the sector, it is necessary to gain experience and collect data from sea trials. As part of the OPERA H2020 project, the Mutriku Wave Power Plant (MWPP) is being used as a real condition laboratory for the experiment of innovative technologies. The plant is situated in the North shore of Spain and has been operating since 2011. It uses the Oscillating Water Column (OWC) principle, which consists in compressing and expanding the air trapped in a chamber due to the inner free-surface oscillation resulting from the incident waves. The pressure difference between the air chamber and the atmosphere is used to drive an air turbine. In that case, a self-rectifying air turbine is the best candidate for the energy conversion, as it produces a unidirectional torque in presence of a bi-directional flow. The power take-off system installed is composed of a biradial turbine connected to a 30kW off-the-shelf squirrel cage generator. One of the novelties of the turbine is a high-speed stop-valve installed close to the rotor. The valve may be used to control the flow rate through the turbine or for latching control. This paper focuses on the development, the implementation and the numerical simulation of five control strategies including turbine speed and generator torque controllers. The algorithms were designed thanks to a numerical model describing one of the OWC chambers of the Mutriku power plant. Numerical results are presented for a variety of sea states and a comparison between the proposed control laws in terms of energy production and power quality is performed.
机译:为了降低波浪能技术的风险并给该行业带来信心,有必要获取经验并从海上试验中收集数据。作为OPERA H2020项目的一部分,Mutriku波浪电厂(MWPP)被用作创新技术实验的真实条件实验室。该工厂位于西班牙的北岸,自2011年开始运营。它采用振荡水塔(OWC)原理,该原理在于压缩和膨胀由于内部自由表面振荡而捕获的腔室中捕获的空气。入射波。气室与大气之间的压力差用于驱动空气涡轮机。在这种情况下,自整流式空气涡轮机是能量转换的最佳选择,因为它在存在双向流动时会产生单向扭矩。安装的取力系统由连接到30kW现成的鼠笼式发电机的双径向涡轮机组成。涡轮机的新颖性之一是靠近转子安装的高速截止阀。该阀可用于控制通过涡轮的流量或用于闭锁控制。本文着重于涡轮速度和发电机转矩控制器这五种控制策略的开发,实施和数值模拟。这些算法的设计归功于一个描述了Mutriku电厂的OWC腔室之一的数值模型。给出了各种海况的数值结果,并在能源生产和电能质量方面对建议的控制规律进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号