首页> 外文会议>International conference on nuclear engineering >DESIGN OPTIMIZATION OF PERCS IN RELAP5 USING PARALLEL PROCESSING AND A MULTI-OBJECTIVE NON-DOMINATED SORTING GENETIC ALGORITHM
【24h】

DESIGN OPTIMIZATION OF PERCS IN RELAP5 USING PARALLEL PROCESSING AND A MULTI-OBJECTIVE NON-DOMINATED SORTING GENETIC ALGORITHM

机译:基于并行处理和多目标非排序排序遗传算法的RELAP5中PERCS的设计优化

获取原文

摘要

Multi-objective optimization is a powerful tool that has been successfully applied to many fields but has seen minimal use in the design and development of nuclear power plant systems. When applied to design, multi-objective optimization involves the manipulation of key design parameters in order to develop optimal designs. These design parameters include continuous and/or discrete variables and represent the physical design specifications. They are modified across a specific design space to accomplish a number of set objective functions, representing the goals for both system design and performance, which conflict and cannot be combined into a single objective function. In this paper, a non-dominated sorting genetic algorithm (NSGA) and parallel processing in Python 3 were used to optimize the design of the passive endothermic reaction cooling system (PERCS) model developed in RELAP5/MOD 3.3. This system has been proposed as a retrofit to currently-operating light water reactors (LWR) and is designed to remove decay heat from the reactor core via the endothermic decomposition of magnesium carbonate (MgCO_3) and natural circulation of the reactor coolant. The PERCS design is currently a shell-and-tube heat exchanger, with the coolant flowing through the tube side and MgCO_3 on the shell side. During a station blackout (SBO), the PERCS initially keeps the reactor core outlet temperature from exceeding 635 K and then reduces it to below 620 K for 30 days. The optimization of the PERCS was performed with three different objectives: (1) minimization of equipment costs, (2) minimization of deviation of the core outlet temperature during a SBO from its normal operation steady-state value, and (3) minimization of fractional consumption of MgCO_3, a metric that is measurable and directly related to the operating time of the PERCS. The manipulated parameters of the optimization include the radius of the PERCS shell, the pitch, hydraulic diameter, thickness and length of the PERCS tubes, and the elevation of the PERCS with respect to the reactor core. The NSGA methodology works by creating a population of PERCS options with varying design parameters. Using the evolutionary concepts of selection, reproduction, mutation, and survival of the fittest, the NSGA method repeatedly generates new PERCS options and gets rid of less fit ones. In the end, the result was a Pareto front of PERCS designs, each thermodynamically viable and optimal with respect to the three objectives. The Pareto front of options as a whole represents the optimized trade-off between the objectives.
机译:多目标优化是一种功能强大的工具,已成功应用于许多领域,但在核电厂系统的设计和开发中却很少使用。当应用于设计时,多目标优化涉及关键设计参数的操纵,以开发最佳设计。这些设计参数包括连续和/或离散变量,并代表物理设计规格。在特定的设计空间中对它们进行了修改,以完成许多设定的目标功能,这些目标功能代表了系统设计和性能的目标,这些目标相互冲突且无法组合为一个目标功能。本文使用Python 3中的非主导排序遗传算法(NSGA)和并行处理来优化在RELAP5 / MOD 3.3中开发的被动吸热反应冷却系统(PERCS)模型的设计。该系统已被提议作为当前运行的轻水反应堆(LWR)的改型,并设计用于通过碳酸镁(MgCO_3)的吸热分解和反应堆冷却剂的自然循环从反应堆堆芯中去除衰变热。目前,PERCS设计是管壳式热交换器,冷却剂流过管侧,而MgCO_3流过管壳侧。在电站停电(SBO)期间,PERCS最初将反应堆堆芯出口温度保持在635 K以上,然后在30天之内将其降至620 K以下。 PERCS的优化具有三个不同的目标:(1)最小化设备成本;(2)最小化SBO期间核心出口温度与其正常运行稳态值之间的偏差;以及(3)最小化分数MgCO_3的消耗量,这是一种可测量的指标,与PERCS的运行时间直接相关。优化的可操作参数包括PERCS壳体的半径,螺距,水力直径,PERCS管的厚度和长度,以及PERCS相对于反应堆堆芯的高度。 NSGA方法通过创建具有不同设计参数的PERCS选项来起作用。使用优胜劣汰的选择,繁殖,突变和存活的进化概念,NSGA方法反复生成新的PERCS选项,并摆脱了不太适合的选项。最后,结果是PERCS设计具有帕累托优势,每种设计在热力学上都可行,并且相对于三个目标而言是最优的。总体而言,帕累托期权代表了目标之间的最佳权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号