首页> 外文会议>IEEE International Symposium on High Performance Computer Architecture >Crash Consistency in Encrypted Non-volatile Main Memory Systems
【24h】

Crash Consistency in Encrypted Non-volatile Main Memory Systems

机译:加密的非易失性主内存系统中的崩溃一致性

获取原文

摘要

Non-Volatile Main Memory (NVMM) systems provide high performance by directly manipulating persistent data in-memory, but require crash consistency support to recover data in a consistent state in case of a power failure or system crash. In this work, we focus on the interplay between the crash consistency mechanisms and memory encryption. Memory encryption is necessary for these systems to protect data against the attackers with physical access to the persistent main memory. As decrypting data at every memory read access can significantly degrade the performance, prior works propose to use a memory encryption technique, counter-mode encryption, that reduces the decryption overhead by performing a memory read access in parallel with the decryption process using a counter associated with each cache line. Therefore, a pair of data and counter value is needed to correctly decrypt data after a system crash. We demonstrate that counter-mode encryption does not readily extend to crash consistent NVMM systems as the system will fail to recover data in a consistent state if the encrypted data and associated counter are not written back to memory atomically, a requirement we refer to as counter-atomicity. We show that näıvely enforcing counter-atomicity for all NVMM writes can serialize memory accesses and results in a significant performance degradation. In order to improve the performance, we make an observation that not all writes to NVMM need to be counter-atomic. The crash consistency mechanisms rely on versioning to keep one consistent copy of data intact while manipulating another version directly in-memory. As the recovery process only relies on the unmodified consistent version, it is not necessary to strictly enforce counter-atomicity for the writes that do not affect data recovery. Based on this insight, we propose selective counter-atomicity that allows reordering of writes to data and associated counters when the writes to persistent memory do not alter the recoverable consistent state. We propose efficient software and hardware support to enforce selective counter-atomicity. Our evaluation demonstrates that in a 1/2/4/8- core system, selective counter-atomicity improves performance by 6/11/22/40% compared to a system that enforces counter-atomicity for all NVMM writes. The performance of our selective counter-atomicity design comes within 5% of an ideal NVMM system that provides crash consistency of encrypted data at no cost.
机译:非易失性主内存(NVMM)系统通过直接处理内存中的持久数据来提供高性能,但在断电或系统崩溃的情况下,需要崩溃一致性支持以一致的状态恢复数据。在这项工作中,我们着重于崩溃一致性机制和内存加密之间的相互作用。这些系统必须进行内存加密,才能通过对持久性主内存的物理访问来保护数据免受攻击者的侵害。由于对每个内存读取访问处的数据进行解密会大大降低性能,因此现有技术提出使用内存加密技术(计数器模式加密),该技术通过与使用关联的计数器进行的解密过程并行执行内存读取访问来减少解密开销每个缓存行。因此,在系统崩溃后需要一对数据和计数器值才能正确解密数据。我们证明,计数器模式加密不会轻易扩展到使一致的NVMM系统崩溃,因为如果加密的数据和关联的计数器没有被原子地写回到内存中,系统将无法以一致的状态恢复数据,这一要求我们称为计数器-原子性。我们表明,为所有NVMM写入巧妙地执行反原子性会序列化内存访问,并导致性能显着下降。为了提高性能,我们观察到并非所有对NVMM的写入都必须是反原子的。崩溃一致性机制依靠版本控制来保持一个一致的数据副本不变,同时直接在内存中操作另一个版本。由于恢复过程仅依赖于未修改的一致版本,因此不必对不影响数据恢复的写入严格执行反原子性。基于此见解,我们提出了选择性的反原子性,当对持久性存储器的写入不更改可恢复的一致状态时,它允许对数据和相关计数器的写入进行重新排序。我们提出有效的软件和硬件支持,以强制执行选择性的反原子性。我们的评估表明,与对所有NVMM写入强制执行反原子性的系统相比,在1/2/4 / 8-核系统中,选择性的反原子性可将性能提高6/11/22/40 \%。我们的选择性反原子性设计的性能在理想的NVMM系统的5%之内,该系统可免费提供加密数据的崩溃一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号