首页> 外文会议>International conference on medical imaging computing and computer-assisted intervention >Translation of 1D Inverse Fourier Transform of K-space to an Image Based on Deep Learning for Accelerating Magnetic Resonance Imaging
【24h】

Translation of 1D Inverse Fourier Transform of K-space to an Image Based on Deep Learning for Accelerating Magnetic Resonance Imaging

机译:基于深度学习的K空间一维逆傅立叶逆变换为图像的加速磁共振成像

获取原文

摘要

To reconstruct magnetic resonance (MR) images from undersampled Cartesian k-space data, we propose an algorithm based on two deep-learning architectures: (1) a multi-layer perceptron (MLP) that estimates a target image from 1D inverse Fourier transform (IFT) of k-space; and (2) a convolutional neural network (CNN) that estimates the target image from the estimated image of the MLP. The MLP learns the relationship between 1D IFT of undersampled k-space which is transformed along the frequency-encoding direction and the target fully-sampled image. The MLP is trained line by line rather than by a whole image, because each frequency-encoding line of the 1D IFT of k-space is not correlated with each other. It can dramatically decrease the number of parameters to be learned because the number of input/output pixels decrease from N2 to N. The next CNN learns the relationship between an estimated image of the MLP and the target fully-sampled image to reduce remaining artifacts in the image domain. The proposed deep-learning algorithm (i.e., the combination of the MLP and the CNN) exhibited superior performance over a single MLP and a single CNN. And it outperformed the comparison algorithms including CS-MRI, DL-MRI, a CNN-based algorithm (denoted as Wang's algorithm), PANO, and FDLCP in both qualitative and quantitative evaluation. Consequently, the proposed algorithm is applicable up to a sampling ratio of 25% in Cartesian k-space.
机译:为了从欠采样的笛卡尔k空间数据重建磁共振(MR)图像,我们提出了一种基于两种深度学习架构的算法:(1)多层感知器(MLP),可从一维逆傅立叶变换估计目标图像( IFT)的k空间; (2)卷积神经网络(CNN),其从MLP的估计图像估计目标图像。 MLP了解沿频率编码方向转换的欠采样k空间的一维IFT与目标全采样图像之间的关系。 MLP是逐行而不是整个图像进行训练的,因为k空间的1D IFT的每个频率编码线都不相互关联。由于输入/输出像素的数量从N2减少到N,它可以大大减少要学习的参数的数量。下一个CNN可以学习MLP的估计图像和目标全采样图像之间的关系,以减少图像中残留的伪像。图片域。提出的深度学习算法(即MLP和CNN的组合)表现出优于单个MLP和单个CNN的性能。在定性和定量评估方面,它均优于CS-MRI,DL-MRI,基于CNN的算法(称为Wang算法),PANO和FDLCP的比较算法。因此,所提出的算法在笛卡尔k空间中的采样率高达25%时适用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号