首页> 外文会议>International conference on space operations >Recommendations Emerging from an Analysis of NASA's Deep Space Communications Capacity
【24h】

Recommendations Emerging from an Analysis of NASA's Deep Space Communications Capacity

机译:对NASA的深空通信能力的分析提出的建议

获取原文

摘要

During 2016-2017, NASA's Space Communications and Navigation (SCaN) Office chartered a study of Deep Space Network (DSN) communications capacity relative to projected future-mission demand over the next 30 years. In this paper, we briefly describe the methodology used to analyze capacity vs. demand over such a broad timeframe, summarize key findings emerging from the analysis, and discuss the associated recommendations. Performing the analysis entailed: identifying key factors shaping the anticipated future mission set, identifying several alternative future mission set scenarios consistent with these factors, and then analyzing each mission set scenario in terms of required antenna capacity, downlink and uplink capabilities, and spectrum as a function of time. On the basis of these aggregate requirements, DSN loading simulations were then conducted that examined how well each of the postulated mission sets could load up onto the the DSN's "in-plan" architecture. To the extent that capacity shortfalls emerged during these baseline simulations, architectural solutions to the shortfalls were then postulated and tested via additional simulations. In general, the trend analyses and baseline loading simulations indicated a significant progression in challenges over the next three decades. In the current decade, the DSN appeared to be operating very close to capacity. The first human exploration mission and its secondary payload launch opportunities for cubesats traveling beyond GEO contributed to this loading. As a consequence, the main challenge appeared to be managing peak asset-contention periods. In the next decade, the DSN continued to operate close to capacity but also began transitioning to more frequent human mission support. Upgrading for, and operating, a human-rated system while continuing to meet robotic mission customer requirements emerged as the key challenge. In the 2030's and beyond, simulations suggested a need for fundamentally new capability and capacity. The high data rates and long link distances characteristic of human Mars exploration drove requirements far beyond what is currently "in plan." The key challenge then became determining the most cost-effective combination of RF and optical assets for communicating with the postulated human Mars assets while still providing for the needs of all the other missions across the solar system. Various link budget, visibility, and loading analyses ultimately suggested that the human Mars exploration demands of the 2030's could best be addressed with two cross-linked RF-optical areostationary relays (or an areostationary relay and deep space habitat) providing a dual "trunk link" to an array of 2-to-3 additional 34m beam waveguide antennas and an ~8.5m optical antenna at each DSN Complex. The dual "trunk link" would enable the same amount of total data return to Earth as a single trunk link at twice the data rate, but with only half the required array size on the ground, assuming use of Multiple Spacecraft Per Antenna (MSPA) techniques. MSPA techniques, including a Multiple Uplink Per Antenna (MUPA) technique currently under investigation, also showed promise for reducing asset contention in the decades prior to human Mars exploration.
机译:在2016年至2017年期间,NASA的太空通讯和导航(SCaN)办公室根据未来30年的预期未来任务需求,对深空网(DSN)通讯能力进行了研究。在本文中,我们简要描述了在如此宽泛的时间范围内分析容量与需求的方法,总结了从分析中得出的主要发现,并讨论了相关的建议。进行分析需要:确定影响预期未来任务集的关键因素,确定与这些因素相符的几种备选未来任务集方案,然后根据所需的天线容量,下行链路和上行链路能力以及频谱等对每个任务集方案进行分析。时间的函数。根据这些总体要求,然后进行了DSN加载模拟,以检查每个假定的任务集可以在DSN的“计划中”架构上加载的程度。在这些基线模拟过程中出现容量不足的情况下,然后通过其他模拟对这些不足的体系结构解决方案进行了假设和测试。总体而言,趋势分析和基准负载模拟表明,未来三十年挑战将出现重大进展。在当前十年中,DSN的运行似乎非常接近容量。第一个人类探索任务及其次要的有效载荷发射机会为超越GEO的立方体卫星贡献了这一负载。结果,主要挑战似乎是管理资产争夺高峰期。在接下来的十年中,DSN继续在接近产能的情况下运行,但也开始过渡到更频繁的人员任务支持。在继续满足机器人任务客户要求的同时,升级和运行人类评级系统已成为主要挑战。在2030年代及以后,模拟表明需要从根本上实现新的能力。人类火星探测的高数据速率和长链接距离使需求远远超出了当前“计划中”。然后,关键的挑战就变成了如何确定射频和光学资产的最具成本效益的组合,以便与假定的人类火星资产进行通信,同时还要满足整个太阳系其他所有任务的需求。各种链路预算,能见度和负荷分析最终表明,最好使用两个交联的RF光学等静中继器(或等静中继和深空栖息地)来解决2030年代人类对火星的探索需求,从而提供双“中继链路”到每个DSN大楼的2至3个额外的34m波束波导天线阵列和一个8.5m的光学天线阵列。假设使用每天线多个航天器(MSPA),双“干线链路”将以两倍的数据速率使返回到地球的总数据量与单个干线链路相同,但地面上的阵列大小仅为所需的一半。技术。 MSPA技术,包括目前正在研究的每天线多上行链路(MUPA)技术,也显示出有望在人类进行火星探测之前的几十年内减少资产争用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号