首页> 外文会议>IEEE International Conference on Networking, Sensing and Control >Computational modeling of biomineral carbonate precipitation in porous sand column at micro scale
【24h】

Computational modeling of biomineral carbonate precipitation in porous sand column at micro scale

机译:微型砂柱中生物矿物碳酸盐沉淀的计算模型

获取原文

摘要

Microbial carbonate precipitation (MCP) is a process increasingly studied with the goal to exploit it to adapt mechanical soil properties for desired land uses. Fundamental understanding of key processes in MCP is needed in order to obtain a controllable full-scale application. Besides experimental investigations, mathematical modeling can help by creating a logical framework in which experiments can be interpreted and, if developed enough, predictions can be made. In this study we developed a numerical model that takes into account the various processes governing MCP at micro-scale (mm). Processes investigated include fluid flow, solute transport, crystal growth and deposition, and the clogging of pore spaces. These processes take place at a pore scale and have their effects on overall system properties. Although lab-scale experiments have proven helpful in elucidating the basic mechanisms that govern bacterial transport, crystal growth, deposition and detachment in porous media, the presence of physical-chemical and biological heterogeneities in several physical and engineered micro-systems make them extremely difficult and complex to represent experimentally. To investigate these processes at pore scale, a model is developed in which the porous medium is represented as an idealized two-dimensional structure. An aqueous influent containing urea and calcium chloride flows by through the porous medium. Solutes are transported by convection and diffusion. Bacteria present on grain surfaces hydrolyze urea, forming ammonium and carbonate ions. Microbial carbonate precipitation occurs in the presence of calcium ions, eventually leading to calcium carbonate crystal formation. The model calculates the growth of a layer of crystals on the grain surface, leading to a narrowing of the pore channels with a concomitant increase in pressure drop and average fluid velocity over the 2-D structure. The results show that this simplified model can be used to identify phenomena that occur in physical experiments and have an effect on the larger scale.
机译:碳酸盐微生物沉淀(MCP)是一个越来越多地研究的过程,其目的是利用它来使机械的土壤特性适应所需的土地用途。为了获得可控的全面应用,需要对MCP中的关键过程有基本的了解。除了实验研究之外,数学建模还可以通过创建一个逻辑框架来提供帮助,在该逻辑框架中可以解释实验,并且,如果开发得足够充分,则可以进行预测。在这项研究中,我们开发了一个数值模型,该模型考虑了控制微尺度(mm)的MCP的各种过程。研究的过程包括流体流动,溶质迁移,晶体生长和沉积以及孔空间的堵塞。这些过程发生在孔尺度上,并影响整个系统的性能。尽管实验室规模的实验已被证明有助于阐明控制细菌在多孔介质中的运输,晶体生长,沉积和分离的基本机制,但在多个物理和工程微系统中存在物理化学和生物异质性使它们极其困难,并且复杂以实验方式表示。为了在孔尺度上研究这些过程,开发了一个模型,其中多孔介质被表示为理想的二维结构。包含尿素和氯化钙的水性进水流过多孔介质。溶质通过对流和扩散来运输。谷物表面上存在的细菌会水解尿素,形成铵离子和碳酸根离子。碳酸钙的微生物沉淀是在钙离子的存在下发生的,最终导致碳酸钙晶体的形成。该模型计算出晶粒表面上一层晶体的生长,从而导致孔道变窄,同时二维结构上的压降和平均流体速度也随之增加。结果表明,该简化模型可用于识别物理实验中发生的现象,并在更大范围内产生影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号