首页> 外文会议>ASME international conference on energy sustainability >DESIGN USING RAY TRACING FOR A SOLAR CHEMISTRY TEST MODULE
【24h】

DESIGN USING RAY TRACING FOR A SOLAR CHEMISTRY TEST MODULE

机译:使用射线追踪的太阳能化学测试模块设计

获取原文

摘要

Development is underway for modifications to an existing central receiver power tower concentrator solar power research facility to accommodate a new solar chemical test module. Optical analysis, using SolTrace, is done to model the existing heliostat field, general tower geometry, and planned system layout to predict the incident irradiation to the new experimental receiver called the Solar Reducer Receiver Reactor (SR3). Within the SR3, a layer of particles flowing over an inclined plane will be highly irradiated to chemically reduce the particulate. To accommodate the inclined plane reactor geometry, a beam down mirror will be modeled. An estimated 1000 suns will be required at the aperture. Currently, the field typically provides around 300 suns over a 1× m × 1 m area. To achieve the required higher flux, a secondary concentrator will concentrate the irradiation from a larger area into a smaller focal spot. Rather than using an expensive compound parabolic design, a series of flat plate petals will instead be used to create a cost effective secondary. The flat plate design also provides added benefits for ease of installation, manufacturing, and cooling. The ray tracing model is used to compare several design parameters including the number of petals, petal length, aperture size and the inclination angle of the petals for the secondary.With these parameters selected, designs have been created for a test module to be constructed at King Saud University's Riyadh Techno Valley CSP Tower. Additionally, the model is used to estimate the necessary cooling needed to operate both the secondary concentrator and the beam down mirror. These models will be tested experimentally using several quartz heaters. The beam down will be cooled by forced convection air, while the secondary concentrator will use water cooling. Lab experiments will measure the feasibility and effectiveness of the proposed cooling before construction. Once these proof of concepts tests have been completed, construction of the secondary concentrator and beam down mirror will begin to allow for testing, in 2018.
机译:正在进行开发,以修改现有的中央接收器功率塔集中器太阳能研究设施,以容纳新的太阳能化学测试模块。使用SolTrace进行的光学分析可以对现有的定日镜场,总体塔架几何形状和计划的系统布局进行建模,以预测入射到称为Solar Reducer接收器反应堆(SR3)的新型实验接收器的入射辐射。在SR3内,将高度照射在倾斜平面上流动的一层颗粒,以化学方式还原颗粒。为了适应倾斜平面反应堆的几何形状,将对束向下的反射镜进行建模。估计在该孔口处将需要1000个太阳。当前,该领域通常在1×m×1m的区域内提供约300个太阳。为了获得所需的更高通量,辅助聚光器将把辐射从较大的区域集中到较小的焦点上。与其使用昂贵的复合抛物线设计,不如使用一系列平板花瓣来创建具有成本效益的辅助花瓣。平板设计还为易于安装,制造和冷却提供了更多好处。光线追踪模型用于比较多个设计参数,包括花瓣数量,花瓣长度,孔径大小和次生花瓣的倾斜角度。选择这些参数后,就可以为在以下位置构造的测试模块创建设计。沙特国王大学的利雅得科技谷CSP塔。此外,该模型还用于估算同时操作二次聚光器和向下光束镜所需的必要冷却。这些模型将使用几个石英加热器进行实验测试。向下的光束将通过强制对流空气冷却,而第二集中器将使用水冷。实验室实验将在施工前测量建议的冷却措施的可行性和有效性。这些概念验证测试完成后,辅助聚光器和落射镜的构造将在2018年开始进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号