首页> 外文会议> >Dynamic Data Driven SAR Reconstruction on Hybrid Multicore systems
【24h】

Dynamic Data Driven SAR Reconstruction on Hybrid Multicore systems

机译:混合多核系统上的动态数据驱动SAR重构

获取原文

摘要

The reconstruction of nxn-pixel Synthetic Aperture Radar imagery using a Backprojection algorithm is compute intensive and incurs O(n2 · m) cost, where m is the number of pulses. As part of this research, we develop dynamic data driven multiresolution algorithms that speed up SAR backprojection on GPUs, hybrid multicore and many-core processors. Further, we performed experiments to observe improvements on a variety of architectures. The challenges in improving performance of this spatially variant reconstruction process on any architecture is load balancing, which circumvents asymmetric work assignment. On GPUs, fine tuned algorithms were developed as part of our research for improving execution time. Further, communication between processors was overlapped with computation to reduce overall execution time. We also developed parallel algorithms and software for constructing multi-resolution SAR images on hybrid multicore processors (HMPs). In particular, several load balancing algorithms were developed for optimizing performance and energy consumption on HMPs. We also developed a systematic approach for deriving the performance-energy trade-offs on HMPs while exploiting dynamic voltage and frequency scaling (DVFS) features of CPU cores and GPUs. This approach helps the user to select the right system configuration, that is, the number of processing elements of each type (cores/GPUs/etc.) and the respective clock frequencies, depending on whether performance or energy optimization is critical to the user. We evaluated performance and energy consumption of our algorithms on an Intel Knights Landing (KNL) processor as a representative of a many-core architecture. We also compared performance and energy consumption of KNL, Ivy Bridge and Tesla K40m.
机译:使用反投影算法重建nxn像素的合成孔径雷达图像需要大量的计算,并且会导致O(n 2 ·m)成本,其中m是脉冲数。作为这项研究的一部分,我们开发了动态数据驱动的多分辨率算法,可加快SAR在GPU,混合多核和多核处理器上的反投影。此外,我们进行了实验,以观察各种体系结构上的改进。在任何体系结构上提高这种空间变异的重建过程的性能所面临的挑战是负载平衡,它避免了不对称的工作分配。在GPU上,微调算法的开发是我们研究的一部分,目的是缩短执行时间。此外,处理器之间的通信与计算重叠,以减少总体执行时间。我们还开发了用于在混合多核处理器(HMP)上构建多分辨率SAR图像的并行算法和软件。特别是,开发了几种负载平衡算法来优化HMP的性能和能耗。我们还开发了一种系统方法,可在利用HMP的性能与能量之间取得平衡,同时利用CPU内核和GPU的动态电压和频率缩放(DVFS)功能。这种方法可帮助用户选择正确的系统配置,即每种类型(内核/ GPU /等)的处理元件的数量以及相应的时钟频率,具体取决于性能或能源优化对用户而言是否至关重要。我们评估了Intel Knights Landing(KNL)处理器作为多核体系结构的代表的算法的性能和能耗。我们还比较了KNL,Ivy Bridge和Tesla K40m的性能和能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号