首页> 外文会议>Geotechnical earthquake engineering and soil dynamics conference >Assessment of Soil-Structure-Fluid Interaction of a Digester Tank Complex in Liquefiable Soils under Earthquake Loadings
【24h】

Assessment of Soil-Structure-Fluid Interaction of a Digester Tank Complex in Liquefiable Soils under Earthquake Loadings

机译:地震作用下液化土壤中消化池复合体的土壤-结构-流体相互作用评估

获取原文

摘要

Evaluating the hydrodynamic effects within a fluid-filled tank during seismic loading is critical for safe design of large fluid-filled tanks. Ideally, a three-dimensional (3-D) numerical model is required to fully capture the dynamic interactions among tank and its support structures, the stored fluid, and foundation soils. However, simulations using a 3-D model may not always be feasible due to project constraints (i.e., costs and schedule) and modeling complexity. This paper presents a case study where an equivalent 2-D tank model was used to capture its 3-D dynamic behaviors so that it can be analyzed using the more-readily available 2-D finite difference computer program FLAC. The cylindrical tank with conical base was modeled using an equivalent 2-D "compression-tension braced frame system" to capture the 3-D tank's ring stiffness. A lumped mass-spring model was also used to represent the hydrodynamic sloshing and impulsive loadings of the stored fluid, and the stiffness of shear walls and secant pile walls on the perimeter of the below-grade reinforced concrete support structure were included in the model. Non-linear plasticity models were utilized to model the non-linear behaviors of the foundation soils, including the PM4SAND effective-stress soil model for the liquefiable soils to estimate the excess pore-water pressure generation under cyclic loading and initiation of liquefaction. The dynamic soil-structure-fluid interaction analysis was performed using seven earthquake motions, selected to represent the design earthquakes for the project. The results show that the simplified 2-D modeling approach using equivalent 3-D structural stiffness can reasonably capture the dynamic responses of this complex fluid-tank system.
机译:评估地震载荷期间流体填充罐内的流体动力学效应对于大型流体填充罐的安全设计至关重要。理想情况下,需要三维(3-D)数值模型来完全捕获罐中的动态相互作用,储存的流体和基础土壤。然而,由于项目约束(即成本和计划)和建模复杂性,使用3-D模型的模拟可能并不总是可行的。本文介绍了一种案例研究,其中使用等效的2-D罐模型捕获其3-D动态行为,以便可以使用更加容易获得的2-D有限差分计算机程序FLAC进行分析。使用等效的2-D“压缩支撑框架系统”模拟具有锥形底座的圆柱形罐,以捕获3-D坦克的环刚度。块状质量弹簧模型还用于表示所储存的流体的流体动力学晃动和脉冲载体,并且在模型中包括以下级钢筋混凝土支撑结构的周边上的剪力壁和割缝桩壁的刚度。利用非线性可塑性模型来模拟基础土壤的非线性行为,包括PM4和有效应力土模型,用于液化土壤的液化土壤,以估计循环加载下的过量孔隙水压力和液化引发。使用七种地震运动进行动态土壤结构流体相互作用分析,选择代表该项目的设计地震。结果表明,使用等效的3-D结构刚度的简化的2-D建模方法可以合理地捕获该复杂流体罐系统的动态响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号