首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Simulation of LOx/GH2 single coaxial injector at high pressure conditions
【24h】

Simulation of LOx/GH2 single coaxial injector at high pressure conditions

机译:LOx / GH2单同轴喷油器在高压条件下的仿真

获取原文
获取外文期刊封面目录资料

摘要

The numerical prediction of the processes in rocket combustion chambers is still challenging due to a variety of problems that are not completly investigated nor completly understood within computational fluid dynamics (CFD): First to mention is the accurate prediction of the jet behavior for sub- and supercritical conditions of propellents (e. g. liquid oxygen LOx) that influences the whole combustion process as well as the flame structure. Another challenge for the numerical method are the dissimilar length scales and material properties for the liquid and gaseous parts in combination with the chemical reactions for the LOx-GH2 combustion. In this study we use the TAU numerical flow solver for the simulation of single-injector experiments conducted at the German Aerospace Center (DLR) in Lampoldshausen. Based on experimental investigations in a windowed DLR subscale thrust chamber "C" (designated BKC) the numerical method in TAU for the simulation of sub- und supercritical LOx-GH2 combustion and atomization model is validated. Liquid oxygen and gaseous hydrogen have been injected through a single coaxial nozzle injector element. For validation of the numerical codes extensive measurements of OH emissions and shadowgraph images of the jet structure are available. Furthermore, wall pressure and temperature measurement data are available that are useful for the validation of the numerical framework. With this study we aim to validate an extension to the TAU flow solver that handles efficiently cryogenic fluids. This solver is able to predict the atomization and combustion processes within rocket combustion chambers at typical operating conditions. For validation we compare the numerical results for one super- and one subcritical load step measured in the experimental BKC campaign.
机译:由于在计算流体力学(CFD)中尚未完全研究或完全理解的各种问题,火箭燃烧室中过程的数值预测仍然具有挑战性:首先要提到的是精确预测子燃烧室和子燃烧室的射流行为。推进剂的超临界条件(例如液态氧LOx)会影响整个燃烧过程以及火焰结构。数值方法的另一个挑战是液态和气态零件的不同长度尺度和材料特性,以及LOx-GH2燃烧的化学反应。在这项研究中,我们使用TAU数值流求解器来模拟在兰帕兹豪森的德国航空航天中心(DLR)进行的单喷射器实验。基于在窗口式DLR子刻度推力室“ C”(指定为BKC)中进行的实验研究,验证了TAU中用于模拟次超超临界LOx-GH2燃烧和雾化模型的数值方法。液态氧和气态氢已通过单个同轴喷嘴喷射器元件注入。为了验证数字代码,可以使用大量的OH排放测量值和射流结构的阴影图图像。此外,可获得壁压力和温度测量数据,这些数据可用于验证数字框架。通过这项研究,我们旨在验证TAU流量求解器的扩展,该扩展程序可有效处理低温流体。该求解器能够预测典型工作条件下火箭燃烧室内的雾化和燃烧过程。为了进行验证,我们比较了在实验性BKC战役中测得的一个超临界载荷和一个亚临界载荷阶跃的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号