首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >3D Numerical Studies on Variable Thrust Propulsion of Rhinoceros Beetle at Creeping Flow Conditions
【24h】

3D Numerical Studies on Variable Thrust Propulsion of Rhinoceros Beetle at Creeping Flow Conditions

机译:爬行流动条件下犀牛甲虫可变推力的3D数值研究

获取原文

摘要

The flow physics of insect's flapping is of topical interest due to varieties of industrial applications. This topic has been investigated from biological, biomechanical, morphological and fluid dynamics aspects by several investigators. One such problem of current interest to the aerodynamic industry is to examine various insects' inherent capabilities for the development of propulsive devices for humankind. Although many studies have been carried out on the aerodynamics of various Beetle wings there is no unique model available as on date for understanding the flow physics of small creatures at creeping flow conditions. In this paper, comprehensive aerodynamics of Rhinoceros Beetle at creeping flow condition is studied. The numerical analyses have been carried out with the help of a validated 3D pressure based SST k-ω turbulence model. The detailed analyses are carried out with the multiblock dynamic mesh for understanding the aerodynamic efficiency and the propulsive efficiency of the flapping wing at a flapping frequency of 40 Hz. Through our 3D analyses we have inferred that the lift is generated during the down stroke of Rhinoceros Beetle wing and the forward propulsive force is detected during its upstroke, which have been corroborated with the findings of Richard . Bomphrey et.al., (Nature, Vol. 544, 6 April 2017, pp. 92-95,) and in-Ho im and Chongam im (AIAA ournal, Vol. 49, No. 5, May 2011, pp. 953-968). The experience gained through this 3D analyses prompted us to conclude that for every beetle wing shape there is a particular flap angle to get the maximum lift and thrust during the upstroke and down stroke. We con ectured that the design and the operational parameters of flying vehicles are the key things for maintaining an efficient flying of any biologically inspired robotic vehicles. This study is a pointer towards for the design optimization of beetle wings for the various industrial applications wherein manoeuvres of robotic vehicles plays a ma or role in designing process.
机译:由于工业应用的多样性,昆虫扑动的流动物理学引起了人们的广泛关注。几位研究者从生物学,生物力学,形态学和流体动力学等方面对该主题进行了研究。空气动力学工业当前感兴趣的这样的问题之一是检查各种昆虫的固有能力以开发人类的推进装置。尽管已经对各种甲壳虫机翼的空气动力学进行了许多研究,但是迄今为止,还没有独特的模型可用于了解小生物在蠕变流动条件下的流动物理特性。本文研究了犀牛甲虫在蠕变流动条件下的综合空气动力学特性。借助于经过验证的基于3D压力的SSTk-ω湍流模型进行了数值分析。使用多块动态网格进行详细分析,以了解襟翼频率为40 Hz时襟翼的空气动力效率和推进效率。通过我们的3D分析,我们推断出升力是在Rhinoceros Beetle机翼的下冲程期间产生的,并且在其上冲程期间检测到了向前的推进力,这与Richard的发现得到了证实。 Bomphrey等人,《自然》,第544卷,2017年4月6日,第92-95页,以及In-Ho im和Chongam im(《美国国际唱片业协会》,第49卷,第5期,2011年5月,第953页) -968)。通过3D分析获得的经验促使我们得出结论,对于每种甲虫机翼形状,都有特定的襟翼角,以在上冲程和下冲程期间获得最大升力和推力。我们认为,飞行器的设计和运行参数是保持任何受生物启发的机器人飞行器高效飞行的关键。这项研究为各种工业应用中的甲虫机翼的设计优化提供了指导,其中机器人车辆的操纵在设计过程中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号