首页> 外文会议>Annual Conference for Protective Relay Engineers >The necessity and challenges of modeling and coordinating microprocessor based thermal overload functions for device protection
【24h】

The necessity and challenges of modeling and coordinating microprocessor based thermal overload functions for device protection

机译:基于微处理器的热过载功能进行建模和协调以保护设备的必要性和挑战

获取原文

摘要

Increased demand and economic constraints often cause the power system to be operated near its thermal limits and sometimes beyond. One way to mitigate this problem is to use the thermal overload protection functions built in to today's modern IED (Intelligent Electronic Device) relays that continuously monitor the thermal load in real time. These functions (ANSI 49) use very sophisticated algorithms that closely replicate the thermal image of the protected object (motor, transformer, feeder cable etc.). It is equally important that this function is set and coordinated properly to avoid mis-operations and equipment damage. Unfortunately, the operate time curves for these functions are often neglected in relay coordination software since modeling them is mathematically challenging. The steps required to express the curve equation in terms of prior load and a trip reference current are lengthy and complex. For transformer applications (using two time constants) the operate time must be solved iteratively. Even if a reduced single equivalent time constant is used to simplify the model there are still deviations. In addition to this, engineers often use typical time constant values since this data is not always provided from the manufacturer. As a result, time constant setting(s) may need adjustment to improve coordination. The ideal solution would be to use custom curves. However this is time consuming since points would have to be entered manually from third party tools. There's also an increased chance for error. This tutorial based paper describes what is required to overcome these modeling challenges followed by a detailed discussion on the coordination principles using motor and transformer project examples. The result, a single time constant equation derived from the first order thermal model that is easily adapted to specific relay settings (temperature, overload factor etc.). The equation, expressed in per unit of the trip reference current term, can be universally applied to any relay.
机译:需求增加和经济限制常常导致电力系统在其热极限附近运行,有时甚至超过其热极限。解决此问题的一种方法是使用内置在当今现代IED(智能电子设备)继电器中的热过载保护功能,该功能可连续不断地实时监控热负荷。这些功能(ANSI 49)使用非常复杂的算法,可以紧密复制受保护对象(电动机,变压器,馈电线等)的热图像。同样重要的是,要正确设置和协调此功能,以避免误操作和设备损坏。不幸的是,这些功能的操作时间曲线在继电器协调软件中经常被忽略,因为对它们进行建模在数学上具有挑战性。根据先验负载和跳闸参考电流来表达曲线方程所需的步骤既漫长又复杂。对于变压器应用(使用两个时间常数),必须迭代求解运行时间。即使使用减少的单个等效时间常数来简化模型,仍然存在偏差。除此之外,由于并非总是由制造商提供此数据,因此工程师经常使用典型的时间常数值。结果,可能需要调整时间常数设置以改善协调。理想的解决方案是使用自定义曲线。但是,这很耗时,因为必须从第三方工具手动输入点数。错误的机会也增加了。该基于教程的论文描述了克服这些建模挑战所需的条件,然后使用电动机和变压器项目示例对协调原理进行了详细讨论。结果是,从一阶热模型得出的单个时间常数方程式很容易适应特定的继电器设置(温度,过载系数等)。以跳闸参考电流项的每单位表示的方程式可以普遍应用于任何继电器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号