首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >MODELLING THE DYNAMIC RESPONSE AND LOADS OF FLOATING OFFSHORE WIND TURBINE STRUCTURES WITH INTEGRATED COMPRESSED AIR ENERGY STORAGE
【24h】

MODELLING THE DYNAMIC RESPONSE AND LOADS OF FLOATING OFFSHORE WIND TURBINE STRUCTURES WITH INTEGRATED COMPRESSED AIR ENERGY STORAGE

机译:集成压缩空气能量存储的浮式海上风轮机结构动力响应和载荷建模

获取原文

摘要

Nowadays there is increased interest to incorporate energy storage technologies with wind turbines to mitigate grid-related challenges resulting from the intermittent supply from large-scale offshore wind farms. This paper presents a new concept to integrate compressed air energy storage (CAES) in floating offshore wind turbine (FOWT) structures. The FOWT support structures will serve a dual purpose: to provide the necessary buoyancy to maintain the entire wind turbine afloat and stable under different met-ocean conditions and to act as a pressure vessel for compressed air energy storage on site. The proposed concept involves a hydro-pneumatic accumulator installed on the seabed to store pressurized deep sea water that is pneumatically connected to the floating support structure by means of an umbilical conduit. The present study investigates the technical feasibility of this concept when integrated in tension leg platforms (TLPs). The focus is on the impact of the additional floating platform weight resulting from the CAES on the dynamic response characteristics and loads when exposed to irregular waves. A simplified model for sizing the TLP hull for different energy storage capacities is initially presented. This is then used to evaluate the dynamic response of nine different TLP geometries when supporting the NREL1 5MW baseline wind turbine model. Numerical simulations are carried out using the marine engineering software tool ANSYS Aqwa©. The work provides an insight on how TLP structures supporting wind turbines may be optimised to facilitate the integration of the proposed CAES concept. It is shown that it is technically feasible to integrate CAES capacities on the order of Megawatt-Hours within TLP structures without compromising the stability of the floating system; although this would involve a substantial increase in the total structure weight.
机译:如今,人们越来越有兴趣将储能技术与风力涡轮机结合使用,以缓解大型海上风电场间歇性供电所带来的与电网相关的挑战。本文提出了一种将压缩空气能量存储(CAES)集成到浮式海上风力涡轮机(FOWT)结构中的新概念。 FOWT支撑结构将起到双重作用:提供必要的浮力,以使整个风力涡轮机在不同的海洋条件下保持漂浮和稳定,并充当现场压缩空气能量存储的压力容器。所提出的概念涉及一种安装在海床上的液压气动蓄能器,用于存储加压的深海水,该深海水通过脐带导管气动地连接到浮动支撑结构。本研究调查了将这种概念集成到张力腿平台(TLP)中的技术可行性。重点是CAES产生的额外浮动平台重量对暴露于不规则波时的动态响应特性和负载的影响。最初提出了一种简化模型,用于针对不同的储能能力确定TLP船体的尺寸。然后,当支持NREL1 5MW基准风力涡轮机模型时,可将其用于评估九种不同TLP几何形状的动力响应。使用海洋工程软件工具ANSYS Aqwa©进行了数值模拟。这项工作提供了有关如何优化支持风力涡轮机的TLP结构以促进所提出的CAES概念整合的见解。结果表明,在不影响浮动系统稳定性的情况下,在TLP结构内以兆瓦时的数量级集成CAES容量在技术上是可行的。尽管这将大大增加总结构重量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号