首页> 外文会议>European Signal Processing Conference >Fine-scale patterns driving dynamic functional connectivity provide meaningful brain parcellations
【24h】

Fine-scale patterns driving dynamic functional connectivity provide meaningful brain parcellations

机译:精细模式驱动动态功能连接,提供有意义的大脑分割

获取原文

摘要

Dynamic functional connectivity (dFC) derived from resting-state functional magnetic resonance imaging (fMRl) allows identifying large-scale functional brain networks based on spontaneous activity and their temporal reconfigurations. Due to limited memory and computational resources, these pairwise measures are typically computed for a set of brain regions from a pre-defined brain atlas, which choice is non-trivial and might influence results. Here, we first leverage the availability of dynamic information and new computational methods to retrieve dFC at the finest voxel level in terms of dominant patterns of fluctuations, and, second, we demonstrate that this new representation is informative to derive meaningful brain parcellations that capture both long-range interactions and fine-scale local organization. We analyzed resting-state fMRI of 54 healthy participants from the Human Connectome Project. For each position of a temporal window, we determined eigenvector centrality of the windowed fMRl data at the voxel level. These were then concatenated across time and subjects and clustered into the most representative dominant patterns (RDPs). Each voxel was then labeled according to a binary code indicating positive or negative contribution to each of the RDPs. We obtained a 36-label parcellation displaying long-range interactions with remarkable hemispherical symmetry. By separating contiguous regions, a finer-scale parcellation of 448 areas was also retrieved, showing consistency with known connectivity of cortical/subcortical structures including thalamus. Our contribution bridges the gap between voxel-based approaches and graph theoretical analysis.
机译:源自静止状态功能磁共振成像(fMR1)的动态功能连接(dFC)允许基于自发活动及其时间重新配置来识别大规模功能性大脑网络。由于有限的内存和计算资源,这些成对测量通常是根据预定义的大脑图集为一组大脑区域计算的,这种选择是不平凡的,可能会影响结果。在这里,我们首先利用动态信息和新的计算方法的可用性,根据主要的波动模式在最佳体素水平上检索dFC,其次,我们证明了这种新的表示方式可提供有益的信息,从而得出有意义的大脑碎片,从而捕获了这两种物质远程互动和规模化的本地组织。我们分析了来自人类连接组项目的54位健康参与者的静息状态功能磁共振成像。对于时间窗口的每个位置,我们确定了在体素水平上窗口化的fMR1数据的特征向量中心性。然后将它们跨时间和主题连接起来,并聚集成最具代表性的优势模式(RDP)。然后,根据表示对每个RDP的正贡献或负贡献的二进制代码标记每个体素。我们获得了一个36标记的碎片,显示了具有显着的半球对称性的长距离相互作用。通过分离连续的区域,还检索到了448个区域的更小尺寸的碎片,显示出与包括丘脑的皮质/皮质下结构的已知连通性的一致性。我们的贡献弥合了基于体素的方法与图形理论分析之间的鸿沟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号