首页> 外文会议>European corrosion congress;International corrosion congress;Pprocess safety congress >Study of stainless steel corrosion in pharmaceutical facilities: Initiation and development
【24h】

Study of stainless steel corrosion in pharmaceutical facilities: Initiation and development

机译:制药设施中不锈钢腐蚀的研究:启动和发展

获取原文

摘要

Production and distribution equipment for clean utilities used in pharmaceutical industries are usually made of 316L austenitic stainless steel. Vessels and pipes undergo cyclic phases of production and sanitisation where the temperature can reach 95°C (hot purified water) or 121°C (pure steam). In these extreme conditions, the stainless steel surface is slowly modified. The chromium-rich passive oxide layer evolves to become a high iron content layer. This involves a change of colour from metallic to red and, in the worst case, to black. This phenomenon is called Rouging. Stainless steel corrosion may have several incidences like release of iron in the media orproduct. Moreover, Good Manufacturing Practices (GMP) require that a surface with product contact has to be visually clean. In the end, pharmaceutical facilities may become unsuitable to produce vaccines and drugs. Rouging has been known for a long time but surprisingly it is poorly studied. This research project has several objectives: (ⅰ) to describe the evolution of the passive layer of stainless steel in contact with hot fluids; (ⅱ) to understand the mechanisms of rouge formation and (ⅲ) to define the incidence of rouge on surface properties. For this purpose, several experiments were designed. The first one is described in this presentation. The goal is to study the interaction between a passive layer and a hot fluid. Two classical grades of austenitic stainless steel are used: AISI 304L and 316L. Several types of surface preparations are tested. Some samples are placed under standard condition (nitric or citric passivation, electropolishing). In order to fully understand the mechanisms of passive layer transformation, other samples are polarized with specific electrochemical conditions. All samples are placed in reactors half filled with different hot media. Some of them are in the liquid part, the others in the gaseous part at different temperatures to study the influence of fluid nature. The evolution of passive layer is followed at different immersion times with SEM (coupled with EDS/WDS), XPS, SIMS, XRD and TEM. SEM provides a topographic analysis, allowing the observation of physical evolution of passive layer with chemical elemental characterisation. XPS provides the oxidation state and elemental analysis of a small area presented as depth profile. XRD provides crystallographic information about passive layer. TEM provides local chemical analyses and crystallographic information.
机译:制药行业中用于清洁公用事业的生产和分配设备通常由316L奥氏体不锈钢制成。容器和管道经历生产和消毒的循环阶段,在此阶段温度可达到95°C(纯净水)或121°C(纯蒸汽)。在这些极端条件下,不锈钢表面会被缓慢地改性。富铬的被动氧化物层发展成为高铁含量层。这涉及颜色从金属变为红色,最坏的情况是变为黑色。这种现象称为路由。不锈钢腐蚀可能会发生多种情况,例如介质或产品中的铁释放。此外,良好生产规范(GMP)要求与产品接触的表面必须在视觉上清洁。最后,制药厂可能不适合生产疫苗和药物。路由已广为人知,但令人惊讶的是,对它的研究很少。该研究项目具有以下目标:(ⅰ)描述与热流体接触的不锈钢钝化层的演变; (ⅱ)了解胭脂形成的机理,以及(ⅲ)定义胭脂在表面性质上的发生率。为此目的,设计了几个实验。在此演示文稿中描述了第一个。目的是研究钝化层和热流体之间的相互作用。使用两种经典等级的奥氏体不锈钢:AISI 304L和316L。测试了几种类型的表面处理剂。一些样品置于标准条件下(硝酸或柠檬酸钝化,电抛光)。为了充分理解钝化层转变的机理,其他样品在特定的电化学条件下被极化。将所有样品放置在一半装有不同热介质的反应器中。其中一些在不同温度下处于液体部分,另一些在气态部分中,以研究流体性质的影响。 SEM(与EDS / WDS耦合),XPS,SIMS,XRD和TEM在不同的浸入时间跟踪无源层的演变。 SEM提供了一种地形分析,可以观察具有化学元素特征的钝化层的物理演化。 XPS提供了一个小区域的氧化态和元素分析,以深度剖面图的形式显示。 XRD提供有关钝化层的晶体学信息。 TEM提供本地化学分析和晶体学信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号