首页> 外文会议>International high-level radioactive waste management conference >CONCEPTUAL REPRESENTATIONS OF FRACTURE NETWORKS AND THEIR EFFECTS ON PREDICTING GROUNDWATER TRANSPORT IN CRYSTALLINE ROCKS.
【24h】

CONCEPTUAL REPRESENTATIONS OF FRACTURE NETWORKS AND THEIR EFFECTS ON PREDICTING GROUNDWATER TRANSPORT IN CRYSTALLINE ROCKS.

机译:断裂网络的概念表示及其对水晶岩地下水运移的预测。

获取原文

摘要

Understanding subsurface fracture network properties at the field scale is important for a number of environmental and economic problems, including siting of spent nuclear fuel repositories, geothermal exploration, and many others. This typically encompasses large volumes of fractured rocks with the properties inferred from the observations at rock outcrops and, if available, from the measurements in exploratory boreholes, quarries, and tunnels. These data are inherently spatially limited and a stochastic model is required to extrapolate the fracture properties over the large volumes of rocks. This study (1) describes three different methods of generating fracture networks developed for use in the fractured continuum model (FCM) and (2) provides a few examples of how these methods impact the predictions of simulated groundwater transport. A detailed analysis of the transport simulations using FCM is provided in the separate paper by the same authors (to be presented at IHLR WM2017 conference). FCM is based on the effective continuum approaches modified to represent fractures. The permeability of discrete fractures is mapped onto a regular three-dimensional grid. The x-, y-, and z effective permeability values of a grid block are calculated from the tensor. The tensor parameters are fracture aperture, dip, strike, and number of fractures in the grid block (spacing). All three methods use the fracture properties listed above to generate corresponding permeability fields. However, the assumptions and conceptual representation of fracture network from which these properties are derived are very different. The Sequential Gaussian Simulation (SGSim) method does not require an assumption regarding the fracture shape. Fracture aperture, spacing, and orientation are defined based on the field observations. Spatially correlated features (continuation of fracture in the direction of the orientation) are created using spatially correlated random numbers generated with SGSIM code. With this method an exact number of fractures cannot be generated. The Ellipsim method assumes that the fractures are two-dimensional elliptical shapes that can be described with radius and aspect ratio. The knowledge of the fracture (ellipse) radius probability distribution is required. The fracture aperture is calculated from the ellipse radius. For this option an exact number of fractures can be generated. The fracture networks generated with SGSim and Ellipsim are not necessarily connected. The connectivity is achieved indirectly via matrix permeability that can be viewed as the permeability of much smaller fractions. The discrete fracture network (DFN) generator assumes elliptical fracture shapes and requires the same parameters as Ellipsim. The principal difference is in connectivity. The DFN method creates the fracture network connectivity via an iterative process in which not connected clusters of fractures are removed. The permeability fields were generated with FCM using three different methods and the same fracture data set loosely based on the data from an existing site in granite rocks. A few examples of transport simulations are provided to demonstrate the major findings of the comparison.
机译:对于许多环境和经济问题,包括乏核燃料库的选址,地热勘探以及许多其他问题,在现场范围内了解地下裂缝网络的性质非常重要。它通常包括大量的裂隙岩石,这些岩石具有从露头的观测结果推断出的特性,如果有的话,还可以从勘探井眼,采石场和隧道的测量值中推断出这些特性。这些数据固有地在空间上受到限制,并且需要一个随机模型来推断大量岩石的断裂特性。这项研究(1)描述了开发用于裂缝连续体模型(FCM)的三种不同的裂缝网络生成方法,并且(2)提供了一些示例说明这些方法如何影响模拟地下水运移的预测。同一作者在另一篇论文中提供了使用FCM进行运输模拟的详细分析(将在IHLR WM2017会议上发表)。 FCM基于修改后的有效连续体方法来代表骨折。离散裂缝的渗透率被映射到规则的三维网格上。根据张量计算网格块的x,y和z有效磁导率值。张量参数是裂隙孔径,倾角,走向和网格块中的裂隙数(间距)。这三种方法都使用上面列出的断裂特性来生成相应的渗透率场。但是,从中推导这些特性的裂缝网络的假设和概念表示是非常不同的。顺序高斯模拟(SGSim)方法不需要关于断裂形状的假设。裂缝的孔径,间距和方向是根据现场观察确定的。使用由SGSIM代码生成的与空间相关的随机数,可以创建与空间相关的特征(在定向方向上继续断裂)。用这种方法不能产生确切数目的裂缝。 Ellipsim方法假定裂缝是二维椭圆形,可以用半径和长宽比描述。需要了解断裂(椭圆)半径概率分布。断裂孔径由椭圆半径计算得出。对于此选项,可以生成确切数量的裂缝。用SGSim和Ellipsim生成的裂缝网络不一定要连接。连通性是通过基质渗透率间接实现的,可以将其视为小得多部分的渗透率。离散裂缝网络(DFN)生成器采用椭圆形裂缝形状,并且需要与Ellipsim相同的参数。主要区别在于连接性。 DFN方法通过迭代过程创建裂缝网络连通性,在该过程中,未连接的裂缝簇被去除。渗透率场是使用三种不同方法通过FCM生成的,并且基于来自花岗岩岩石中现有站点的数据松散地设置了相同的裂缝数据。提供了一些运输模拟示例,以证明比较的主要发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号