首页> 外文会议>International energy conversion engineering conference;AIAA propulsion and energy forum >Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory
【24h】

Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

机译:在放射性同位素动力系统系统集成实验室的NASA Glenn研究中心进行的高级斯特林转换器控制单元测试

获取原文

摘要

Future NASA missions could include long duration fiyby, orbital, lander, or rover applications where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past 16 years, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current (AC) produced by the linear alternator of the convertor, provides a specified direct current (DC) output voltage for the spacecraft, synchronizes the piston motion of the two convertors to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies (LMCT) has designed, developed and tested an Engineering Development Unit Advanced Stirling Convertor Control Unit (EDU ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built with flexibility to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins University/Applied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a 'dead bus' recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus. The results of these tests are presented here.
机译:未来的NASA任务可能包括长时间的菲比,轨道,着陆器或漫游者应用,这些应用可能会限制利用太阳光发电的能力。放射性同位素动力系统(RPS)为阳光不足或运行要求不足以使其他动力系统不可行的任务提供了可靠的动力源。在过去的16年中,NASA格伦研究中心(GRC)一直在支持RPS的开发。先进的斯特林放射性同位素发生器(ASRG)使用了一对先进的斯特林转换器(ASC)。尽管取消了ASRG的飞行开发,但许多技术和硬件仍在继续开发和测试,以指导未来的活动。具体而言,用于转换器的控制器是基于斯特灵的RPS的组成部分。对于ASRG设计,控制器可保持转换器的稳定运行,调节转换器线性发电机产生的交流电(AC),为航天器提供指定的直流(DC)输出电压,使航天器的活塞运动同步两个转换器,以最大程度地减少振动,并在稳定的活塞振幅和热端温度下管理和维持运行。它不仅为航天器提供动力,而且还必须调节转换器的运行,以避免损坏内部组件并在加油后保持安全的热状态。洛克希德·马丁公司的一致性技术(LMCT)已设计,开发和测试了工程开发部门高级斯特林转换器控制单元(EDU ACU),以支持此项工作。 GRC使用ACU EDU作为RPS的非核表示形式,该RPS也包括一对双先进斯特林转换器模拟器(DASCS)和相关的支持设备,以在放射性同位素动力系统系统集成实验室(RSIL)中进行测试)。 RSIL的设计和构建具有灵活性,可以利用RPS技术评估硬件。 RSIL可以洞察多达3个放射性同位素发电器之间的电气相互作用,相关的控制策略以及典型的电气系统负载。测试的第一阶段包括由约翰·霍普金斯大学/应用物理实验室开发的DASCS,它通过硬件和软件的组合实时模拟一对ASC的操作和电气行为。测试包括以下航天器的电能存储配置:电容,电池和超级电容器。在每种储能配置中对DASCS和ACU的测试都包括对典型任务曲线的仿真,以及负载开/关期间的瞬态电压和电流数据。对这些设备的测试还包括引发多种系统故障,例如短路,母线过压,欠压以及“死线”恢复,以恢复正常的电源操作。该测试的目的是验证连接到航天器电气总线上的ACU的运行情况。这些测试的结果在此处显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号