首页> 外文会议>International Conference on ITS Telecommunications >Squat detection in railway rails using Gabor filter bank, SVM classifier and Genetic Algorithms
【24h】

Squat detection in railway rails using Gabor filter bank, SVM classifier and Genetic Algorithms

机译:使用Gabor滤波器组,SVM分类器和遗传算法的铁路下蹲检测

获取原文
获取外文期刊封面目录资料

摘要

The paper presents an algorithm allowing for automatic detection of squat flaws in railway rails. These flaws can pose a threat to the safety of railway traffic. A Gabor filter bank along with SVM classifier were used in the detection process. The optimal number of features used to discriminate between squat and the area without squat as well as the parameters for classifier were selected with the help of Genetic Algorithm. Overall classification rate for the system was 95%.
机译:本文提出了一种算法,该算法可以自动检测铁轨中的下蹲缺陷。这些缺陷可能对铁路交通的安全构成威胁。在检测过程中使用了Gabor滤波器组和SVM分类器。在遗传算法的帮助下,选择了用于区分下蹲和不下蹲的最佳特征数以及用于分类的参数。该系统的总体分类率为95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号