首页> 外文会议>International workshop on structural health monitoring >Numerical Model for Characterization of Multifunctional Energy Storage Composite Cells, Modules, and Systems
【24h】

Numerical Model for Characterization of Multifunctional Energy Storage Composite Cells, Modules, and Systems

机译:表征多功能储能复合电池,模块和系统的数值模型

获取原文

摘要

Recent work on multifunctional materials has demonstrated that high-strength composites could be integrated with active Li-ion battery material to create high strength and high energy density storage structures that could meet the transportation requirements on mobility and energy storage density. However, the performance and the design of the multifunctional materials require fundamental understanding of the mechanical behavior of the integrated Multifunctional Energy Storage (MES) Composites systems under various loading conditions. Characterization of this new class of multifunctional materials would become very challenging without, an adequate simulation model to guide the tests and validate the results. Therefore, this work presents the mechanical simulation and design of the MES Composites system that consists of multiple thin battery layers, polymer reinforcements, and carbon fiber composites, which results significant challenges in simulation and modeling. To tackle these issues, homogenization techniques were adopted to. characterize the multi-layer properties of battery material with physics-based constitutive equations combined with non-linear deformation theories to handle the interface between the battery layers. Second, both mechanical and electrical damage and failure modes among battery materials, polymer reinforcements and carbon fiber-polymer interfaces were characterized through appropriate models and experiments. The model of MES Composite has been implemented in a commercial finite element code. A comparison of structural response and failure modes from numerical simulations and experimental tests will be presented in the paper. The simulated strain distribution and its application to Structural Health Monitoring (SHM) on MES Composites will also be discussed. The results of the study showed that the predictions of elastic and damage responses of MES Composites at various loading condition agreed with the test data. With appropriate material parameters determined from experiments, this multi-physics model can be used as a necessary tool to characterize a failure envelop that governs the design of MES Composites under specified electrical and mechanical loads.
机译:最近在多功能材料上的工作表明,高强度复合材料可以与活性锂离子电池材料集成在一起,以创建高强度和高能量密度的存储结构,从而满足运输性和能量存储密度的运输要求。但是,多功能材料的性能和设计要求对集成的多功能储能(MES)复合材料系统在各种负载条件下的机械性能有基本的了解。如果没有足够的仿真模型来指导测试和验证结果,那么这类新型多功能材料的特性将变得非常具有挑战性。因此,这项工作提出了由多层薄电池层,聚合物增强材料和碳纤维复合材料组成的MES复合材料系统的机械仿真和设计,这给仿真和建模带来了巨大挑战。为了解决这些问题,采用了均质化技术。通过基于物理的本构方程与非线性变形理论相结合来表征电池材料的多层特性,以处理电池层之间的界面。其次,通过适当的模型和实验,对电池材料,聚合物增强材料和碳纤维-聚合物界面之间的机械和电气损坏与破坏模式进行了表征。 MES Composite的模型已通过商业有限元代码实现。本文将对数值模拟和实验测试中的结构响应和破坏模式进行比较。还将讨论模拟的应变分布及其在MES复合材料上的结构健康监测(SHM)中的应用。研究结果表明,在各种载荷条件下,MES复合材料的弹性和损伤响应的预测与试验数据吻合。通过从实验中确定合适的材料参数,该多物理场模型可以用作表征在特定电气和机械载荷下控制MES复合材料设计的失效包络的必要工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号