首页> 外文会议>IEEE/ACM International Conference on Cyber-Physical Systems >Constructing Compact Causal Mathematical Models for Complex Dynamics
【24h】

Constructing Compact Causal Mathematical Models for Complex Dynamics

机译:构造复杂动力学的紧凑因果数学模型

获取原文

摘要

From microbial communities, human physiology to social and bio- logicaleural networks, complex interdependent systems display multi-scale spatio-temporal pa erns that are frequently classi ed as non-linear, non-Gaussian, non-ergodic, and/or fractal. Distin- guishing between the sources of nonlinearity, identifying the na- ture of fractality (space versus time) and encapsulating the non- Gaussian characteristics into dynamic causal models remains a ma- jor challenge for studying complex systems. In this paper, we pro- pose a new mathematical strategy for constructing compact yet ac- curate models of complex systems dynamics that aim to scrutinize the causal e ects and in uences by analyzing the statistics of the magnitude increments and the inter-event times of stochastic pro- cesses. We derive a framework that enables to incorporate knowl- edge about the causal dynamics of the magnitude increments and the inter-event times of stochastic processes into a multi-fractional order nonlinear partial di erential equation for the probability to nd the system in a speci c state at one time. Rather than follow- ing the current trends in nonlinear system modeling which pos- tulate speci c mathematical expressions, this mathematical frame- work enables us to connect the microscopic dependencies between the magnitude increments and the inter-event times of one stochas- tic process to other processes and justify the degree of nonlinearity. In addition, the newly presented formalism allows to investigate appropriateness of using multi-fractional order dynamical models for various complex system which was overlooked in the literature. We run extensive experiments on several sets of physiological pro- cesses and demonstrate that the derived mathematical models o er superior accuracy over state of the art techniques.
机译:从微生物群落,人类生理学到社会和生物/神经/神经网络,复杂的相互依存的系统显示出多尺度的时空格局,通常被分为非线性,非高斯,非遍历和/或分形。 。区分非线性源,识别分形性质(空间与时间)以及将非高斯特性封装到动态因果模型中仍然是研究复杂系统的主要挑战。在本文中,我们提出了一种新的数学策略,用于构建复杂的系统动力学的紧凑而准确的模型,其目的是通过分析震级增量和事件间时间的统计数据来研究因果关系和影响随机过程。我们得出了一个框架,该框架能够将有关量级增量的因果动力学和随机过程的事件间时间的知识合并到一个多分数阶非线性偏微分方程中,从而可以在特定条件下找到系统一次陈述。这种数学框架使我们能够将一个随机过程的幅度增量和事件间时间之间的微观依赖关系联系起来,而不是遵循采用特定数学表达式的非线性系统建模的当前趋势。其他过程,并证明非线性程度是合理的。另外,新近提出的形式主义允许研究在各种复杂系统中使用多重分数阶动力学模型的适当性,而在文献中却忽略了这种复杂性。我们对几套生理过程进行了广泛的实验,并证明了所推导的数学模型具有优于最新技术的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号