首页> 外文会议>International astronautical congress >Erosive burning modelling on solid rocket motors. Application to development of SRM 120
【24h】

Erosive burning modelling on solid rocket motors. Application to development of SRM 120

机译:固体火箭发动机上的侵蚀性燃烧建模。在SRM 120开发中的应用

获取原文

摘要

Solid rocket motors are still preferred for a variety of missions due to their simplicity, high reliability and relatively low cost when compared to other propulsion methods. Various solid rocket motors models have been developed in order to allow their accurate design. Key performance parameters have been investigated and various geometrical solutions have been chosen in order to increase the performance of a given solid rocket motor. The key parameter in such models is the burn rate and its accurate prediction in the pressure and temperature conditions available inside combustion chamber. We have undertaken the development of a 120 mm solid rocket motor (SRM 120) for a suborbital vehicle. The motor aims at producing around 7000 Newtons for almost 6 seconds of burn time while using a steel combustion chamber with filleted end-cap and nozzle. The propellant has a cylindrical geometry with a central burning core and it is composed of 10 identical segments. Details are given on both the construction and the firing test preparation of the motor since this represents important knowledge for the subsequent operation of the motor. The thrust curve is measured together with key performance parameters on a horizontal test stand. An internal ballistic model is developed for SRM 120 with the aim to accurately its performance parameters. The model incorporates both start-up and tail off phases, including the start-up using pressure membrane as used on many solid rocket motors. The burn rate is first shown to depend only on pressure and comparison between theoretical and numerical data is done. Comparison is done with test stand measurements and sign of erosive burning is indicated. A model for erosive burning is described and implemented within the abovementioned internal ballistic model. Further we change the numerical model to incorporate the erosive burning and compare again numerical results with the experimental measurements. We show good agreement between the numerical results and experimental data and indicate methods through which negative impact of erosive burning can be diminished.
机译:与其他推进方法相比,固体火箭发动机仍是各种任务的首选,因为它们的简单性,高可靠性和相对较低的成本。为了允许它们的精确设计,已经开发了各种固体火箭发动机模型。为了提高给定固体火箭发动机的性能,已经研究了关键性能参数并选择了各种几何解决方案。这种模型中的关键参数是燃烧率及其在燃烧室内可用压力和温度条件下的准确预测。我们已经为亚轨道飞行器开发了120毫米固体火箭发动机(SRM 120)。该电机的目标是在使用带有圆角端盖和喷嘴的钢制燃烧室时,产生约7000牛顿的燃烧时间,约需6秒钟。推进剂呈圆柱形,带有中心燃烧核,由10个相同的部分组成。给出了有关电动机的构造和点火测试准备的详细信息,因为这代表了电动机后续操作的重要知识。在水平测试台上测量推力曲线以及关键性能参数。针对SRM 120开发了内部弹道模型,旨在精确地确定其性能参数。该模型包括启动阶段和退出阶段,包括许多固体火箭发动机上使用压力膜的启动阶段。首先显示出燃烧速率仅取决于压力,并且进行了理论数据与数值数据之间的比较。与试验台的测量结果进行比较,并显示出侵蚀性燃烧的迹象。在上述内部弹道模型内描述并实现了用于侵蚀燃烧的模型。此外,我们更改了数值模型以纳入侵蚀性燃烧,并再次将数值结果与实验测量结果进行比较。我们在数值结果和实验数据之间显示出良好的一致性,并指出了可以减少侵蚀性燃烧的负面影响的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号