首页> 外文会议>International astronautical congress >AERO-GRAVITY MANEUVERS CONSIDERING LIFT AROUND EERTH, MARS AND VENUS
【24h】

AERO-GRAVITY MANEUVERS CONSIDERING LIFT AROUND EERTH, MARS AND VENUS

机译:考虑地球,火星和金星升空的重力重力操纵

获取原文

摘要

The goal of this research is to study the energy variations and the effects in the trajectories of a spacecraft performing a aero-gravity assisted maneuver. The study is made as a function of the ballistic coefficients, lift to drag ratio, velocity impulses and angle of approach of the maneuver. The aerodynamics forces generates modifications in the trajectory and energy of the spacecraft. The mathematical model begin with a spacecraft coming from an orbit around the Sun-Planet system under the dynamics given by the restricted three-body problem. The Sun and Planet are in circular orbits around their center of mass. The initial position and velocity conditions are given according to a Gravity-Assisted trajectory with constant pericenter altitude. The energy is measured before and after the passage. The equations of motion are numerically integrate sing a Runge-Kutta-F 7/8 numerical method. The Earth, Venus and Mars are used as planets for the approach and several different conditions are used for the variables describing the maneuver. The actual results indicates several aspects related to the problem. A single Gravity-Assisted maneuver around the Earth with 90 and 270 approach angles has maximum losses and energy gains, respectively. Using the atmospheric influence (Aerogravity-assisted maneuver), ballistic coefficient around 5.0x10-7 km2/kg, high lift to drag ratio and without impulsives, the energy losses are lower than the ones given by the pure gravity-assisted maneuvers in both trajectories. The aerogravity-assisted trajectories with impulsives and 0.0 lift to drag ratio, an approach angle of 90, has an energy increment for impulsive angles between -30 to 150, obtaining the maximum energy gain at 70. With values as high as 9.0 for the lift to drag ratio, the energy variation is higher. Considering angles of approach of 270 the energy variation is positive for impulsive angles from -150 to -70 and 0.0 lift to drag, but become negative when the lift to drag ratio is 9.0. Results of GA and AGA in Venus and Mars have similar behavior in terms of energy variation, compared to the maneuvers made using the Earth.
机译:这项研究的目的是研究进行空气重力辅助操纵的航天器的能量变化及其在轨迹中的影响。该研究是根据弹道系数,升阻比,速度脉冲和机动接近角进行的。空气动力会改变航天器的轨迹和能量。数学模型从宇宙飞船开始,该宇宙飞船在有限的三体问题给定的动力学条件下,从围绕太阳行星系统的轨道进入。太阳和行星围绕其质心处于圆形轨道。初始位置和速度条件是根据具有恒定的圆心高度的重力辅助轨迹给出的。在通过之前和之后测量能量。使用Runge-Kutta-F 7/8数值方法对运动方程进行数值积分。地球,金星和火星被用作进近的行星,几种不同的条件被用作描述机动的变量。实际结果表明与该问题有关的几个方面。绕地球旋转90度和270度的单个重力辅助操纵分别具有最大的损耗和能量增益。使用大气影响(空气重力辅助操纵),弹道系数约5.0x10-7 km2 / kg,高升阻比且无脉冲,在两个轨迹上的能量损失均低于纯重力辅助操纵所产生的能量损失。 。带有冲力和升力与阻力比为0.0的空气重力辅助轨迹,接近角为90,在-30至150的冲力角下具有能量增量,在70时获得最大能量增益。升力值高达9.0与阻力比相比,能量变化更大。考虑到270°的接近角,对于从-150到-70的冲击角和0.0升阻比,能量变化为正,但当升阻比为9.0时,能量变化为负。与使用地球的演习相比,金星和火星中GA和AGA的结果在能量变化方面具有相似的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号