首页> 外文会议>Annual meeting of the Institute of Nuclear Materials Management >Electrochemical Data Analysis and Simulation via Artificial Neural Intelligence for Pyroprocessing Safeguards Application
【24h】

Electrochemical Data Analysis and Simulation via Artificial Neural Intelligence for Pyroprocessing Safeguards Application

机译:基于人工神经网络的电化学数据分析和热解保障应用仿真

获取原文

摘要

Pyroprocessing technology is a high-temperature method utilizing molten salts for used nuclear fuel treatment. The heart of this process is an electrorefiner (ER) which contains different fission, rare-earth, and transuranic chloride compositions during the operation. As a result, materials detection and accountability towards safeguards within the ER are extremely important in order to advance this technology. Development of a smart signal detection program toward pyroprocessing safeguards will require full understanding of massive ER systemic parameters. To obtain this desired goal, a novel electrochemical data analysis and simulation using an artificial neural intelligence (ANI) method has been developed and explored. One of the common electrochemical methods, cyclic voltammetry (CV), has been chosen to successfully test this approach as the first stepping stone. Massive collected data sets by Hoover (2014), over 77,000 data values, for 0.5 to 5 wt% of zirconium (Zr) in LiCl-KCl molten salt at 773 K with different scan rates has been considered to provide multi-variables (e.g. scan rate, voltage, current, time, and concentration) for ANI technique [1]. The computational code which has been performed using the commercial software MATLAB, weighted each inputs and contrasted with the sum of inputs to the threshold value to produce the outputs. That is, ANI can be used to mimic the system by driving the data sets of currents, potentials, concentrations, scan rates and process time through interrelation between variables to provide a current and potential simulated data set. Optimizing the ANI process is related to choice a proper number of second layer which is called intermediate hidden layer. Preliminary results demonstrate that the model can predict the current versus potential diagram with an error around 16%.
机译:热解技术是一种利用熔融盐处理核燃料的高温方法。该过程的核心是电精炼机(ER),在操作过程中它包含不同的裂变,稀土和超铀氯化物成分。因此,为了推进该技术,材料检测和对ER内部保障措施的责任制非常重要。面向高温处理保障措施的智能信号检测程序的开发将需要全面了解大量的ER系统参数。为了达到这个期望的目标,已经开发并探索了使用人工神经智能(ANI)方法进行的新型电化学数据分析和模拟。已选择一种常见的电化学方法循环伏安法(CV)作为第一个垫脚石来成功测试此方法。 Hoover(2014)收集的大量数据集,超过77,000个数据值,被认为在773 K下LiCl-KCl熔融盐中0.5%至5 wt%的锆(Zr)具有不同的扫描速率可提供多变量(例如扫描速率,电压,电流,时间和浓度)的ANI技术[1]。使用商用软件MATLAB进行的计算代码对每个输入进行加权,并与输入总和进行比较以形成阈值。也就是说,ANI可通过变量之间的相互关系来驱动电流,电位,浓度,扫描速率和处理时间的数据集来模拟系统,从而提供电流和潜在的模拟数据集。优化ANI过程与选择适当数量的第二层(称为中间隐藏层)有关。初步结果表明,该模型可以预测电流与电位图,误差约为16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号