首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >Aerodynamic Design of Transonic Natural-Laminar-Flow (NLF) Wing via Surrogate-based Global Optimization
【24h】

Aerodynamic Design of Transonic Natural-Laminar-Flow (NLF) Wing via Surrogate-based Global Optimization

机译:通过基于代理的全局优化设计跨音速自然层流(NLF)机翼的空气动力学设计

获取原文

摘要

This paper aims to develop an efficient global optimization method for design of transonic natural-laminar-flow (NLF) airfoils and wings, based on high-fidelity computational fluid dynamics (CFD) solver. The CFD solver features functionality of automatic transition prediction, by coupling Reynolds-averaged Navier-Stokes (RANS) equations with the linear-stability-theory-based dual e~N method for Tollmien-Schlichting and crossflow instabilities. An A320-sized transonic NLF wing with a laminar supercritical airfoil is designed for cruise condition at Mach=0.74, Re=20 million, C_L=0.515. In order to further improve the cruise efficiency, this NLF wing is optimized at higher Mach number of 0.75 via an in-house surrogate-based optimizer. The optimization is formulated as a drag minimization problem with constraints on lift, pitching moment and geometric thickness. Through only 130 CFD evaluations, 12.1 counts drag reduction is obtained, while all constraints are strictly satisfied. Further study shows that the drag reduction is contributed by both of shock-wave weakening and laminar-flow extension. On suction side, the favorable pressure gradient is maintained while shock wave is weakened; on pressure side, the cross-flow (CF) instability is effectively suppressed and thereby the laminar flow region is dramatically extended. The improvement of aerodynamic performance is observed not only at design point but also over a certain range of off-design lift coefficients.
机译:本文旨在基于高保真计算流体动力学(CFD)求解器,开发一种有效的全局优化方法,用于设计跨音速自然层流(NLF)机翼和机翼。 CFD求解器具有自动过渡预测功能,通过将雷诺平均Navier-Stokes(RANS)方程与基于线性稳定性理论的Tollmien-Schlichting和错流不稳定性的双重e〜N方法耦合。设计了具有层状超临界翼型的A320尺寸跨音速NLF机翼,用于巡航条件下的马赫数= 0.74,Re = 2000万,C_L = 0.515。为了进一步提高巡航效率,该NLF机翼通过内部基于代理的优化器以0.75的更高马赫数进行了优化。该优化被公式化为阻力最小化问题,其中存在对升力,俯仰力矩和几何厚度的限制。仅通过130次CFD评估,就可以完全减少阻力,同时获得了12.1的减阻值。进一步的研究表明,减阻是由冲击波减弱和层流扩展共同作用的。在吸力侧,在减小冲击波的同时,保持了良好的压力梯度;在压力侧,有效地抑制了横流(CF)的不稳定性,从而显着扩展了层流区域。不仅在设计点,而且在一定范围的非设计升力系数上都观察到了空气动力学性能的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号