首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >Three-dimensional liquid sheet breakup: vorticity dynamics
【24h】

Three-dimensional liquid sheet breakup: vorticity dynamics

机译:三维液膜破裂:涡度动力学

获取原文

摘要

A numerical study of the temporal evolution of three-dimensional instabilities on a planar liquid sheet/jet segment is performed using Direct Numerical Simulation and level-set analysis. Use is made of an unsteady 3D code with a finite-volume solver of the Navier-Stokes equations for the liquid stream and the adjacent gas, and a level-set method for the liquid/gas interface tracking. The initial profiles and the primary estimations are obtained from a 2D full-jet simulation. This study reveals insights into the development of three-dimensional instabilities on liquid sheets, which result in formation of lobes, holes, bridges, ligaments, and eventually droplets. Vortex dynamics is used to examine the mechanisms responsible for the distortion of the liquid sheet surface from primary Kelvin-Helmholtz perturbations into three-dimensional waves. Various breakup patterns occur at different flow regimes. The gas-to-liquid density and viscosity ratios, the Reynolds (Re) and Weber (We) numbers, and geometrical parameters such as the liquid sheet thickness to initial wavelength ratio are the most important parameters. At low/medium Re, hairpin vortices form on the braid and overlap with the lobe hairpins, causing thinning of the lobe sheets and resulting in formation of holes and bridges, which later break into ligaments and droplets. At higher Re, perforation of the lobes is hindered due to splitting of the original vortex rollers. The advection of the fast-moving eddy causes corrugations at high Re. The ligaments are then formed due to stretching of these corrugations. More ligaments with thinner cross-section are formed at high Re. The Weber number also has significant effect on the size of the ligaments and droplets. High surface tension prevents the thinning of the lobe sheet and precludes its perforation. The anti-symmetric mode is dominant in the practical injector range of Re and We. For the thicker liquid sheet, the anti-symmetric waves appear later and their wavelength is larger than for the thin-sheet case. Vortex stretching and tilting contribute to the generation of streamwise vorticity for a wide range of Re. λ2 contours are used to relate the vorticity dynamics of the flow to the deformation of the liquid sheet surface and different stages of droplet formation, e.g. lobe formation and perforation, ligament formation, stretching and tearing.
机译:使用直接数值模拟和水平集分析对平面液体片/射流段上三维不稳定性的时间演化进行了数值研究。使用不稳定的3D代码以及用于流体流和相邻气体的Navier-Stokes方程的有限体积求解器,以及用于液/气界面跟踪的水平设置方法。初始轮廓和主要估计值是从2D全射流仿真获得的。这项研究揭示了对液层上三维不稳定性发展的见解,这些不稳定性导致形成裂片,孔,桥,韧带,最终形成液滴。涡旋动力学用于检查引起液体薄片表面从主要开尔文-亥姆霍兹摄动变形为三维波的机理。在不同的流态下会发生各种破裂模式。最重要的参数是气液密度和粘度比,雷诺数(Re)和韦伯(We)数以及几何参数,例如液体片的厚度与初始波长之比。在Re低/中等时,发辫涡流在辫子上形成并与叶发夹重叠,导致瓣片变薄并导致形成孔和桥,随后破裂成韧带和小滴。在较高的Re处,由于原始涡旋辊的分裂,阻碍了叶片的穿孔。快速移动的涡流的平流会在高Re时引起波纹。然后由于这些波纹的拉伸而形成韧带。高Re会形成更多横截面更薄的韧带。韦伯数对韧带和液滴的大小也有重要影响。高表面张力可防止波瓣片变薄并防止其穿孔。在Re和We的实际喷油器范围内,反对称模式占主导地位。对于较厚的液体片材,反对称波出现较晚,并且其波长比薄板情况大。涡旋的拉伸和倾斜有助于在宽范围的Re范围内产生沿流的涡旋。 λ2等高线用于将流动的涡旋动力学与液体板表面的变形和液滴形成的不同阶段(例如,流体表面)联系起来。裂片形成和穿孔,韧带形成,伸展和撕裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号