首页> 外文会议>Annual Allerton Conference on Communication, Control, and Computing >Secure clock synchronization under collusion attacks
【24h】

Secure clock synchronization under collusion attacks

机译:共谋攻击下的安全时钟同步

获取原文

摘要

Recently, the Secure Average Time Synchronization (SATS) protocol has been proposed and analyzed; this distributed clock synchronization protocol is capable of successfully tackling several attacks such as denial-of-service (DoS), message-delay, message duplication/repetition, and even a generic message manipulation. However, the collusion attack, in which neighboring malicious nodes may cooperate so as to strike stealthier attacks that are more difficult to handle, remains by and large an open problem. In the setup of SATS, we derive the fundamental asymptotic bounds in the number of malicious agents-as function of the benign ones-that can be efficiently handled without tampering accurate network-wide synchronization. Going a step further, we develop a risk model for collusions and use it to obtain even tighter bounds. In specific, we establish that SATS can handle `many' malicious nodes with high probability: an order of almost square-root of the benign ones for the case of no risk, and almost linear when the risk of collusion is accounted. Last but not least, we analyze and experimentally assess an interesting phenomenon: the presence of attackers may lead to a convergence speedup of SATS, since malicious nodes can be effectively constrained from the network, thus affecting the algebraic connectivity of the graph corresponding to the network topology. Numerical simulations verify the theoretical results, i.e., collusions are avoided when the number of malicious nodes is bounded by the asymptotic bounds and the algebraic connectivity increases due to incorporating `well behaved' malicious nodes.
机译:最近,已经提出并分析了安全平均时间同步(SATS)协议。这种分布式时钟同步协议能够成功应对多种攻击,例如拒绝服务(DoS),消息延迟,消息复制/重复,甚至是通用消息操作。然而,共谋攻击仍然是一个未解决的问题,在共谋攻击中,相邻的恶意节点可能会合作以对付更难处理的隐形攻击。在SATS的设置中,我们推导了恶意代理数量的基本渐近边界(作为良性代理的函数),可以在不破坏准确的全网同步的情况下有效地对其进行处理。更进一步,我们开发了共谋风险模型,并使用它来获得更严格的界限。具体来说,我们确定SATS可以处理“许多”恶意节点的可能性很高:在无风险的情况下,良性节点的阶数几乎是平方根,而在考虑共谋风险时则几乎呈线性。最后但并非最不重要的一点是,我们分析并通过实验评估了一个有趣的现象:攻击者的存在可能会导致SATS的融合加速,因为可以从网络上有效地限制恶意节点,从而影响与网络相对应的图的代数连通性。拓扑。数值模拟验证了理论结果,即,当恶意节点的数量由渐近边界限制并且代数连接性由于合并“行为良好”的恶意节点而增加时,避免了共谋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号