首页> 外文会议>IEEE Photovoltaic Specialists Conference >A new concept to break the space charge limit of organic semiconductors for photovoltaic applications
【24h】

A new concept to break the space charge limit of organic semiconductors for photovoltaic applications

机译:打破光伏应用中有机半导体空间电荷极限的新概念

获取原文

摘要

As a fundamental electrostatic limit, the space charge limit (SCL) for photocurrent is a universal feature and of paramount importance in organic semiconductors with unbalanced electron/hole mobility and high exciton generation. Here, we propose a new concept of plasmonic-electrical effect to manipulate the electrical properties (photocarrier generation, recombination, transport, and collection) of semiconductor devices with the help of plasmonically induced light redistribution. As a proof-of-concept, organic solar cells (OSCs) incorporating metallic planar and grating anodes are systematically investigated for normal and inverted device structures. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating-inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties in contrast to the planar-inverted and planar-normal ones. It is because abnormally redistributed holes by the plasmonic-electrical effect, despite of the typically low mobility of holes, shorten hopping path of low mobility holes to reach the grating anode. Consequently, the work contributes to the evolution of device architecture to break the SCL with detailed multiphysics explanations. Moreover, the proposed plasmon-electrical concept will open up a novel way to manipulate both optical and electrical properties of organic semiconductor devices for photovoltaic applications.
机译:作为基本的静电极限,光电流的空间电荷极限(SCL)是普遍特征,在电子/空穴迁移率不平衡且激子产生高的有机半导体中至关重要。在这里,我们提出了一种等离子电效应的新概念,以借助等离激元诱导的光重新分布来操纵半导体器件的电特性(光载流子的产生,复合,传输和收集)。作为概念验证,系统地研究了包含金属平面阳极和光栅阳极的有机太阳能电池(OSC),用于常规和倒置的器件结构。有趣的是,尽管强等离子共振会在光栅阳极周围诱导异常密集的光载流子,但与平面倒置和平面法向的相比,光栅倒置的OSC不受空间电荷累积(极限)和电性能下降的影响。这是因为尽管空穴的迁移率通常较低,但是由于等离子体电效应而异常地重新分配了空穴,因此缩短了迁移率低的空穴到达光栅阳极的跳跃路径。因此,这项工作为设备架构的发展做出了贡献,以详细的多物理场解释来打破SCL。此外,提出的等离子体电学概念将开辟一种新颖的方式来操纵用于光伏应用的有机半导体器件的光学和电学性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号