首页> 外文会议>IAEE international conference;International Association for Energy Economics >Long-Term Endogenous Economic Growth and Transition Towards Renewable Energy
【24h】

Long-Term Endogenous Economic Growth and Transition Towards Renewable Energy

机译:长期内生经济增长和向可再生能源的过渡

获取原文

摘要

OverviewThe purpose of the present article is to build a bridge between the endogenous economic growth theory, the biophysical economics perspective, and the past and future transitions between renewable and nonrenewable energy forms that economies have had and will have to accomplish. We provide a theoretical endogenous economic growth model subject to the physical limits of the real world, meaning that nonrenewable and renewable energy production costs have functional forms that respect physical constraints, and that technological level is precisely defined as the efficiency of primary-to-useful exergy conversion. Our model is calibrated on historical global data (1750-2010) and is able to reproduce an increasing reliance on nonrenewable from an early almost-renewable-only regime and the subsequent inevitable complete transition towards renewable energy that human will have to deal with in a not-too-far future.MethodsThe economy under consideration has three competitive markets for: the final output good, capital and energy. The production of the final good is operated by a representative firm and requires capital and energy. This final output, representing the gross world production (GWP), is then allocated to consumption or investment by the representative household. The accumulated capital is detained by the household and rented to: the nonrenewable renewable energy sectors and the final good sector. Nonrenewable and renewable energy (hereafter NRE and RE respectively) are considered to be perfect substitutes and are consequently sold at the same price. A representative firm operates the NRE stock (aggregation of coal, oil, gas and uranium resources) with an increasing unitary cost of extraction that is however attenuated by technological progress. In the same way, another representative firm exploits a free primary RE flow (say radiant energy from the sun) considered to be constant and so large that its availability cannot constraint the economy. This RE flow is operated with a decreasing unitary cost of production and under decreasing returns to scale. Technological progress increases the energy productivity of the final good sector and also affects the capital intensiveness of both NRE and RE sectors so that energy-producing and energy-using sectors are ‘technologically consistent’. This technological progress evolves endogenously but it is formally bounded from above implying that the energy and capital requirements for industrial or energy production cannot be nil and tend asymptotically towards positive values.ResultsThe main conclusion of this paper is clear: for an economy in which energy-producing and energyconsumingsectors are technologically consistent, and in the absence of any correction of the price system, thefinal efficiency of primary-to-useful exergy conversion of the economy must be sufficiently high (above 0.35) inorder to have a smooth transition from nonrenewable to renewable energy that does not negatively impacteconomic growth. In our model the economy cannot avoid a temporary energy lock-in (unanticipatednonrenewable energy peak occurring at a low level of renewable energy production) when this requirement forfuture technological level is not attained. In such circumstances the energy transition from nonrenewable torenewable energy induces an overshoot and then degrowth of the economic product. Such lock-in behavior of theeconomic system can be (at least partially) avoided through the implementation of a carbon price, which has alsothe benefit of decreasing GHG emissions from fossil-fuel use and hence mitigating climate change. Therefore,implementing a carbon price on nonrenewable energy production and recycling its revenue could help in thechoice of the best development path that, at minimum, should consist in a smooth energy transition that does notnegatively impact economic development.ConclusionsOur model supports the idea that both the quantity of net energy supplied by energy-producing sectorsto the energy-dissipative economy, and the ability of the economy system to use this energy (in fact exergy) arekey elements of economic growth. To our knowledge, we are the first to develop a simple theoretical model thatcan calibrated on global historical data and correctly reproduce long-term global historical trends fornonrenewable and renewable primary energy supply, aggregated technological progress, and GWP. This ismainly because, unlike similar approaches, we have ensured that our theoretical model respects some of themany fundamental biophysical limits of the real world. These are formalized in the functional forms that wehave established for the capital requirements of nonrenewable and renewable energy productions, and in theaggregated technological progress definition taken as the efficiency of primary-to-useful exergy conversion.However, in its current formulation our model cannot be used to define endogenously the optimal timepath of the carbon price, nor the optimal time path allocation of the carbon tax revenue among the differentrecycling uses. This would require including the role of politic and economic institutions in order to explain howproducers and consumers receive adequate incentives to change their behavior.
机译:概述 本文的目的是在内生的经济增长理论,生物物理经济学的观点与经济已经和将要实现的可再生和不可再生能源形式之间的过去和未来转变之间架起一座桥梁。我们提供了一个理论上的内生经济增长模型,该模型受现实世界的物理限制的约束,这意味着不可再生和可再生能源的生产成本具有尊重物理约束的功能形式,并且技术水平被精确定义为从初用到有效的效率火用转换。我们的模型已根据全球历史数据(1750-2010)进行了校准,并且能够重现越来越多的依赖,即早期几乎只能采用可再生能源的政权对不可再生能源的依赖,以及随之而来的不可避免的向人类可再生能源的全面过渡。不久的将来。 方法 所考虑的经济体具有三个竞争性市场:最终产品,资本和能源。最终产品的生产由一家代表公司运营,并且需要资金和能源。然后,代表家庭的最终产出代表世界总产值(GWP),分配给消费或投资。累积的资本由家庭扣留并出租给:不可再生的可再生能源部门和最终的商品部门。不可再生能源和可再生能源(以下分别称为NRE和RE)被认为是完美的替代品,因此以相同的价格出售。一家有代表性的公司经营的NRE存量(煤炭,石油,天然气和铀资源的总量)的单一开采成本不断增加,但是随着技术进步而降低。同样,另一家具有代表性的公司则利用了自由的一次可再生能源流(例如来自太阳的辐射能),该流量被认为是恒定的,并且太大,以至于其可利用性不会限制经济。这种可再生能源流程以降低的单位生产成本和规模收益的降低来运行。技术进步不仅提高了最终商品部门的能源生产率,而且还影响了NRE和RE部门的资本密集度,因此,能源生产和能源使用部门在技术上是“一致的”。这项技术进步是内生的发展,但从上面正式地受到了限制,这意味着工业或能源生产的能源和资本需求不能为零,而会渐近地趋向于正值。 结果 本文的主要结论很明确:对于一个生产和消耗能源的经济国家 行业在技术上是一致的,并且在没有对价格体系进行任何更正的情况下, 经济中从初级到有用的火用转换的最终效率必须足够高(高于0.35) 为了使从不可再生能源到可再生能源的平稳过渡不会造成负面影响 经济增长。在我们的模型中,经济无法避免暂时的能源锁定(意料之外的) 当可再生能源生产水平较低时发生不可再生能源高峰 无法达到未来的技术水平。在这种情况下,能量从不可再生过渡到 可再生能源引起经济产品的超调,然后下降。这种锁定行为 通过实施碳价,可以(至少部分地)避免经济体系的产生。 减少化石燃料使用产生的温室气体排放并因此减轻气候变化的好处。所以, 对不可再生能源生产实施碳价并回收其收入可能有助于 选择最佳发展路径,至少应包括平稳的能源过渡,而不会 对经济发展产生负面影响。 结论 我们的模型支持以下观点:能源生产部门提供的净能源数量 耗能经济,经济体系使用这种能源的能力(实际上是火用)是 经济增长的关键要素。据我们所知,我们是第一个开发简单理论模型的人, 可以根据全球历史数据进行校准,并正确再现以下方面的长期全球历史趋势: 不可再生和可再生一次能源供应,综合技术进步和全球升温潜能值。这是 主要是因为与其他类似方法不同,我们确保我们的理论模型尊重某些 现实世界的许多基本生物物理极限。这些形式化为我们所使用的功能形式 制定了针对不可再生和可再生能源生产的资本要求,并在 总体技术进步定义被视为从初级到有用的火用转化的效率。 然而,在目前的公式中,我们的模型无法用于内生地定义最佳时间 碳价格的路径,也不是不同国家之间碳税收入的最佳时间路径分配 回收利用。这将需要包括政治和经济机构的作用,以便解释如何 生产者和消费者会获得足够的动力来改变他们的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号