首页> 外文会议>IAEE international conference;International Association for Energy Economics >OPTIMISATION OF THE BIOECONOMY – COST-EFFECTIVE SWEDISH BIOENERGY PATHWAYS
【24h】

OPTIMISATION OF THE BIOECONOMY – COST-EFFECTIVE SWEDISH BIOENERGY PATHWAYS

机译:生物经济的优化-具有成本效益的瑞典生物能源途径

获取原文

摘要

OverviewUse of bioenergy could contribute to reduction of greenhouse gases (GHGs) and increased energysecurity, but to what extent depends on the cost and potential availability of biomass resources. Whilebioenergy today is primarily used in the stationary energy sector for electricity and heat production, thereis a strong interest in options for biofuels for transport and the use has in recent years increasedsignificantly albeit from very low levels. Declared policy targets on both national and international levelsalso aim at increasing its future share while also targeting lower GHG emissions.Biomass can be used for a number of applications, e.g., as for biofuel production and/or heat/powerproduction or as feedstock in the forest product industry. Changes in biomass demand in any of thesesectors will affect biomass markets and, thus, imply altered conditions for other biomass use. A widesystems approach in the analysis of efficient bioenergy utilization and ways of meeting climate targets istherefore imperative.This study aims at exploring system interactions related to future bioenergy utilization and robust costefficientbioenergy technology strategies for the case of Sweden and, from a systems perspective, identifybio-based fuel and technology scenarios cost-efficiently meeting demand for energy services andenvironmental objectives, assess utilization options of biomass, analyze costs and effects of differentenergy policy strategies. The main research questions include:1. How will implementation of stringent CO_2 reduction and road transport fossil fuel phase-out policesaffect future utilization of biomass and its price?2. Under stringent CO_2 constraints, how can integration of second generation biofuel production withexisting industry or district heating systems influence future cost-efficient biomass utilization?The research questions are explored using a variety of scenarios in which effects of potentialdevelopment paths for the factors of importance for the national energy system are tested. Examples ofsuch key factors include CO_2 reduction levels and technology development.MethodsTo address the complex dynamic relationships between sub-sectors of national energy systems, a systemmodeling approach is applied. A model structure of the Swedish energy system, the so-calledMARKAL_Sweden model, based on the internationally well-established, dynamic, bottom-up modelingframework MARKAL, is further developed and applied. The result of a model run represents the overallcost-optimal system solution meeting the defined model constraints (e.g., regarding energy servicedemands and emission restrictions).MARKAL_Sweden applies a long-term time horizon reaching from 1995 to 2050. The model applies acomprehensive view of the Swedish energy system and represents all relevant sectors includingelectricity, district heating, industry, transport, premises and services. The system is represented as anetwork of energy technologies and flows of energy carriers, covering fuel extraction and import, viaenergy conversion technologies and distribution systems to end-use energy demands, such as fortransportation, space heat and industrial process heat. Technology input data to the model includetechnology properties such as current capacities, investment costs, operation costs and conversionefficiencies for energy technologies in all parts of the national energy system.In the study, the MARKAL_Sweden model is improved in several respects, e.g., in regard to the biomasssupply representation. Potentially available quantities of biomass from forestry are based on data from theSwedish Forest Inventory. The forest development is simulated using HUGIN, a calculation system thatenables the calculation of potential outcomes of stemwood, logging residues and stumps from harvestingoperations. Supply data from the forest potential modeling are then used to construct detailed biomasssupply curves which are integrated into the MARKAL_Sweden model.Significant model developments are also carried out for the representation of conversion routes forbioenergy, in particular, regarding the model description of integration opportunities for second generationbiofuel production, which often have a relatively large net surplus of heat. Thus, heat integration with heatsinks can further increase system efficiency and lower the costs. A number of options for biorefinery heatintegration with district heating systems and existing industry are added to the model. Black liquor gasification in the paper and pulp industry can be seen as a special case of industry integration and istreated as a separate alternative.ResultsThe results indicate a potential for significantly increased use of bioenergy in the energy system. The highdemand and strong competition for biomass significantly increases biomass prices and leads to utilizationof higher-cost biomass sources such as stumps and cultivated energy forest. To some extent, pulpwoodis also used for energy purposes.The allocation of bioenergy between sectors differs over the studied time horizon and depends on theenergy policies applied. For CO_2 reductions of 80% over the studied period, the largest increase inbiomass utilization occurs in production of transport biofuels, which by 2050 accounts for 41% of totalprimary biomass use. The scenario shows a required annual growth rate for road transport biofuels ofabout 6% from 2010 to 2050. Due to the limited amount of biomass resources available, and the strongdemand for transport biofuels, biomass use for heat and power generation declines in the second half ofthe studied period.If a sector specific fossil fuel phase-out policy is implemented in the road transport sector, aiming at closeto fossil-free road transports already by 2030 (defined as -80% until 2030), while keeping the system-wideCO_2 reduction of 80% to 2050, a doubling of the annual growth rate of transport biofuel (to 12%) until2030 is required. A large part of the biomass resources is then allocated to biofuel production in themiddle of the studied period. Compared to the situation without a fossil fuel phase-out policy, the totalsystem-wide use of bioenergy is about 5% higher, while the use for heat and power is about 20% lower in2030. However, the difference between the two situations is small in 2050.Results imply that second generation biofuels are an integral part of optimized system solutions meetingstringent climate targets. However, even in a biomass endowed country like Sweden, the utilization ofbiomass resources will be constrained, and transport energy efficiency measures constitute a highlyimportant part of a carbon-free transport sector in order to reduce fuel demand (e.g., by use of energyefficientvehicle technologies, such as plug-in hybrids).Integration of biofuel production with heat demands in industry or district heating systems can be a costefficientoption for meeting of stringent CO_2 constraints. Under the assumed conditions, such technologysolutions increase system efficiency, lower the production cost of biofuels and the overall system cost. Inthe model results, integrated alternatives are chosen over stand-alone options in all cases such optionsare available. However, the level of cost saving from integration differs from comparably large in somecases to small in other. Under the assumed conditions, biofuel production through black liquor gasificationshows high cost-competitiveness while biofuel production with heat integration shows somewhat lower.The integration options available are of large significance for which biofuel option shows the highest costcompetitiveness.Regarding second generation biofuels, SNG is chosen to a comparably large extent inall cases. In cases with only stand-alone second generation biorefinery plant configurations available,SNG gets a dominating position. Due to its high production conversion efficiency, SNG is anadvantageous option despite comparably high distribution and vehicle costs. However, when black liquorgasification is available, this option is utilized for methanol production. Benefits of methanol include lowdistribution and end-use costs compared to gaseous fuels. Heat integration cases have primarily apositive impact on ethanol production, for which available polygeneration plant configurations show highefficiency.Stringent CO_2 constraints will induce a strong biomass competition, which in turn is likely to significantlyincrease future biomass prices compared to today’s levels; substantial increases in biomass prices areseen across all modeled scenarios applying CO_2 emission constraints. Increased stress on the system inthe form of additional policy measures, such as early fossil fuel phase-out in road transport or a nuclearpower phase-out, or other factors such as slower than anticipated development and cost reduction ofelectric vehicles further pushes up biomass prices.The CO_2 shadow prices (marginal costs) generated by the model suggest that significant penalties (e.g.,taxes) on fossil fuels are required to achieve stringent CO_2 reductions to 2050. Under the assumedconditions, the results suggest that gasoline taxes in the long run needs to at least be doubled whilekeeping biofuels tax exempt if the modelled emission reductions and technology transition should occur.Other sectors than transport show lower marginal CO_2 reduction costs.ConclusionsThe study concludes that in an optimised carbon neutral energy and transport system the use ofbioenergy increases significantly and results in considerable utilization of higher-cost biomass sourcessuch as stumps and cultivated energy forest. It also leads to strongly increased production of transportbiofuels and that biomass use for heat and power generation declines in the second half of the studiedtime period. If a sector specific fossil fuel phase-out policy is implemented in the road transport sector thisresults in a small additional bioenergy use in 2030 but it has only minor impacts in 2050. The optimizedbioeconomy implies a strong increase in marginal biomass costs and high CO_2 prices are required toattain a carbon neutral system.
机译:概述 生物能源的使用可能有助于减少温室气体和增加能源 安全性,但在何种程度上取决于生物质资源的成本和潜在可用性。尽管 今天的生物能源主要用于固定能源领域,用于发电和供热。 人们对运输用生物燃料的选择非常感兴趣,并且近年来的使用有所增加 尽管从非常低的水平来看,还是很明显的。宣布的国家和国际政策目标 它还旨在增加其未来的份额,同时也致力于降低温室气体排放。 生物质可用于多种应用,例如,用于生物燃料生产和/或热/动力 林产品工业中的生产或用作原料。这些方面的生物量需求变化 行业将影响生物质市场,因此暗示其他生物质使用条件的改变。广泛 高效生物能源利用的分析和满足气候目标的方法的系统方法是 因此势在必行。 这项研究旨在探索与未来生物能源利用和稳健的成本效益相关的系统交互作用 瑞典的生物能源技术战略,并从系统角度确定 生物燃料和技术情景以经济高效的方式满足了对能源服务的需求,以及 环境目标,评估生物质的利用方案,分析成本和各种不同的影响 能源政策策略。主要研究问题包括: 1.如何实施严格的CO 2削减和道路运输化石燃料淘汰政策 影响未来生物质的利用及其价格? 2.在严格的CO_2约束下,如何将第二代生物燃料生产与 现有的行业或区域供热系统是否会影响未来具有成本效益的生物质利用? 使用各种可能影响潜在影响的方案来探讨研究问题。 测试了对国家能源系统至关重要的因素的发展路径。示例 这些关键因素包括减少CO_2的水平和技术发展。 方法 为了解决国家能源系统各子行业之间复杂的动态关系, 应用建模方法。瑞典能源系统的模型结构,即所谓的 MARKAL_Sweden模型,基于国际公认的动态,自下而上的模型 MARKAL框架得到进一步开发和应用。模型运行的结果代表总体 满足定义的模型约束(例如关于能源服务)的成本最优的系统解决方案 要求和排放限制)。 MARKAL_Sweden应用了从1995年到2050年的长期时间范围。该模型应用了 全面了解瑞典的能源系统,并代表所有相关部门,包括 电力,区域供热,工业,交通,房屋和服务。系统表示为 能源技术和能源载体流网络,涵盖通过 能源转换技术和配电系统,以满足最终用能需求,例如用于 运输,空间热和工业过程热。模型的技术输入数据包括 技术属性,例如当前的容量,投资成本,运营成本和转换 国家能源系统各个部分的能源技术效率。 在这项研究中,MARKAL_Sweden模型在几个方面都得到了改进,例如在生物量方面 供应代表。来自林业的生物量的潜在可用量基于 瑞典森林清单。森林开发使用HUGIN进行了模拟,HUGIN是一种计算系统, 能够计算出木材的潜在结果,伐木残材和伐木残渣 操作。来自森林潜力模型的供应数据随后被用于构建详细的生物量 供应曲线已集成到MARKAL_Sweden模型中。 还进行了重要的模型开发,以表示 生物能源,特别是关于第二代整合机会的模型描述 生物燃料生产,通常净热余量较大。因此,热与热结合 接收器可以进一步提高系统效率并降低成本。生物炼油厂供热的多种选择 该模型增加了与区域供热系统和现有行业的集成。造纸和纸浆行业中的黑液气化可以看作是行业整合的特例,并且是 视为单独的替代方案。 结果 结果表明,在能源系统中使用生物能源的可能性大大增加。高 对生物质的需求和激烈的竞争大大提高了生物质的价格并导致利用 成本更高的生物质资源,例如树桩和人工林。在某种程度上,纸浆木 也用于能源目的。 各部门之间生物能源的分配在所研究的时间范围内有所不同,并且取决于 实施能源政策。在研究期间内,如果将CO_2减少80%,则最大的增加是 生物质利用发生在运输生物燃料的生产中,到2050年占总量的41% 初级生物质利用。该方案显示了公路运输生物燃料的所需年增长率为 从2010年到2050年约占6%。 下半年对运输生物燃料的需求,用于热能和发电的生物质使用量下降 研究时期。 如果在公路运输行业实施特定行业的化石燃料淘汰政策,则目标是 到2030年已经实现无化石道路运输(到2030年定义为-80%),同时保持全系统范围 到2050年,二氧化碳减少80%,是运输生物燃料年增长率的两倍(达到12%),直到 需要2030。然后,很大一部分生物质资源被分配给生物燃料生产。 研究期的中期。与没有化石燃料淘汰政策的情况相比, 在整个系统中,生物能源的使用量约高5%,而热能和电力的使用量约低20%。 2030年。但是,到2050年,这两种情况之间的差异很小。 结果表明,第二代生物燃料是满足以下要求的优化系统解决方案不可或缺的一部分 严格的气候目标。但是,即使在像瑞典这样的生物质资源丰富的国家, 生物质资源将受到限制,运输能效措施构成了高度 无碳运输部门的重要组成部分,以减少燃料需求(例如,通过使用高能效 车辆技术,例如插电式混合动力车)。 将生物燃料生产与工业或区域供热系统中的热量需求整合在一起可能会节省成本 满足严格的CO_2约束的选项。在假定条件下,这种技术 解决方案提高了系统效率,降低了生物燃料的生产成本和整个系统的成本。在 在模型结果中,在所有情况下均会选择独立选项而不是集成选项 可用。但是,集成带来的成本节省水平在某些方面有所不同。 在其他情况下要小一些。在假定条件下,通过黑液气化生产生物燃料 显示出高成本竞争力,而具有热集成的生物燃料生产则显示出较低的成本竞争力。 可用的集成选项具有重要意义,对于该选项而言,生物燃料选项具有最高的成本竞争力。 关于第二代生物燃料,SNG在很大程度上被选为 所有情况。如果只有独立的第二代生物精炼厂配置可用, SNG占据主导地位。由于其较高的生产转换效率,SNG是一种 尽管分配和车辆成本相对较高,但仍是一种有利的选择。但是,当黑酒 可进行气化,此选项可用于甲醇生产。甲醇的好处包括低 与气体燃料相比的分销和最终使用成本。热集成案例主要有一个 对乙醇生产有积极影响,为此可用的多联产工厂配置显示出很高的 效率。 严格的CO_2约束条件将引发强大的生物质竞争,进而可能会显着加剧 与今天的水平相比,提高未来的生物质价格;生物质价格大幅上涨 在所有应用CO_2排放约束的建模场景中都可以看到。增加了系统中的压力 其他政策措施的形式,例如公路运输或核能中早期淘汰化石燃料 逐步淘汰电源或其他因素,例如比预期的开发速度慢和成本降低 电动汽车进一步推高了生物质价格。 该模型产生的CO_2影子价格(边际成本)表明存在重大罚款(例如, 要求对化石燃料征收税款)以实现到2050年的CO_2严格减排。 情况,结果表明,从长远来看,汽油税至少需要加倍,而 如果应该进行模型化的减排和技术转型,则免征生物燃料税。 交通运输以外的其他部门的边际CO_2减排成本较低。 结论 研究得出的结论是,在优化的碳中和能源和运输系统中,使用 生物能源显着增加,并导致大量利用成本更高的生物质资源 例如树桩和耕种的能源林。这也大大提高了运输产量 生物燃料以及用于热能和发电的生物质使用量在下半年下降 时间段。如果在公路运输部门实施了特定行业的化石燃料淘汰政策,那么 会在2030年带来少量的额外生物能源使用,但在2050年只会产生很小的影响。 生物经济意味着边际生物质成本的强劲增长,并且需要高昂的CO_2价格才能 实现碳中和系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号