首页> 外文会议>IAEE international conference;International Association for Energy Economics >FOSSIL ENERGY IN ECONOMIC GROWTH: A STUDY OF THE ENERGY DIRECTION OF TECHNICAL CHANGE, 1950-2012
【24h】

FOSSIL ENERGY IN ECONOMIC GROWTH: A STUDY OF THE ENERGY DIRECTION OF TECHNICAL CHANGE, 1950-2012

机译:经济增长中的化石能源:技术变革的能源方向研究,1950-2012年

获取原文

摘要

OverviewClimate change mitigation challenges national economies to increase productivity while reducing fossil energy consumption. Fossil energy-saving technical change has been assumed to accomplish this, yet empirical evidence is scarce (Bowen & Hepburn 2014). Empirical studies attempting to determine the relationship between output and fossil energy use econometrically without an underlying theory of production and technical change report contradictory findings (eg Ozturk 2010, Wagner 2008). Results tend to be sensitive to method, sample size and enpoints chosen. Empirical studies starting from economic models of growth and technical change find plausible results about corrrelations between price movements, and rate and direction of technical change, but tend to report results only for single or few, high income countries due to lack of data such as energy prices for longer time ranges or many countries (Hassler et al. 2012). Because of the tight integration of national economies into global trade networks with resulting varying national economic structures that differ in their energy intensities, national patterns of energy used in production cannot be used to infer the worldwide relationship.This paper investigates the long-run relationship between the rate and direction of technical change with respect to fossil energy and labor for the world economy. Growth rates of labor productivity and the fossil energy–labor ratio are examined for more than 95 percent of world output between 1950 and 2012. The average elasticity of the energy–labor ratio with respect to labor productivity is close to one, implying highly energy-using technical change, but no trade-off between factor productivity growth rates. This stylized fact suggests the importance of a cheap, abundant energy supply for robust global growth, and a crucial role for renewable energy. Integrated assessment models in the current Intergovernmental Panel on Climate Change report do not incorporate this restriction in their baseline scenario, which raises questions about the empirical basis of their transition pathway projections.Section 2 reviews empirical literature on past energy intensity trends, both with and without reference to economic production, and explains the simple production model with energy on which this analysis is based. Section 3 describes how the dataset was constructed and details the method of analysis. Section 4 presents results of an analysis of the correlation of rate and direction of technical change both in cross sections of national growth rates, and in time series of regional growth rates. The influence on the fossil energy direction of renewable energy sources in the mix is also analyzed. Section 5 discusses the implications of the results both for current policy and for scenarios of future economic growth in integrated assessment models. Section 6 concludes by summarizing the results and identifying promising research avenues.MethodsData for output and employment are from the Total Economy Database based on estimates by Angus Maddison (Conference Board 2015). Fossil energy data is from from the International Energy Agency (IEA) for non-residential primary fossil energy consumption after 1970, and from Darmstadter et al. (1971) for primary fossil energy consumption for the period 1950-1968. Methods of analysis are qualitative and quantitative. Visual analysis of scatter plots of compound annual growth rates of cross sections and time series identify long-term patterns; outliers are analysed against the historical economic context of their period. Linear and locally weighted polynomial regression (loess) yield elasticity estimates and the domain over which a linear relationship between productivity growth and the direction of technical change prevails, and a panel estimate tests robustness of cross-sectional correlations to unobserved heterogeneity.Results1) In compound annual growth rate cross sections, the national elasticity of the fossil energy labor ratio with respect to labor productivity (η) has been close to one over a large domain of labor productivity rates, and for the greatest part of the sample; in other words, different labor productivity rates have been achieved at a similar rate of change of energy intensity. Neither an ‘innovation possibilities frontier’ trade-off between several single-factor productivities nor fast ‘decoupled’ growth occurred.2) This pattern holds with remarkable constancy both in the 1950-70s and after 2000; different technical change regimes in the 1980s and, to a lesser extent, in the 1990s are explained partly by an adjustment to higher energy prices due to two OPEC crises, and the transition of formerly socialist economies. A panel estimate with country and time fixed effects confirms this relationship.3) Recent substitution of fossil energy with low carbon energy sources has lowered the elasticity, η, without having a significant impact on labor productivity growth.ConclusionsThe results show that historically, faster labor productivity growth from scale economies has coincided with more fossil energy-using technical change at a similar rate for the world economy. The robustness of the relationship over the last sixty years suggests a ‘stylized fact’ of the relationship between productivity growh and the fossil energy-labor ratio. Due to its centrality for ‘decoupled’ growth, aggregate models of economic growth with greenhouse gas should incorporate it.By singling out the 1980s and 90s as exceptional due to shocks from OPEC crises and the transition from plan to market, it goes some way to explaining the difficulty of identifying long-run relationships in datasets that start in 1971 (IEA data) or 1980 (US Energy Information Administration data), used by most extant econometric analyses. This also raises questions about extrapolations in integrated assessment models that typically base their historial trends on the period 1970-2010, of which two decades appear as exceptions due to ‘shocks’ that cannot be replicated by policy; moreover, their projections of global future rates of change of labor productivity and energy intensity do not reflect the restriction identified in the historical data.At the national level, episodes of successful national development have been highly energy-using, suggesting that future economic development and growth will need to rely on cheap and abundant energy supplies. This points to the importance of low-cost low carbon energy sources, which the data suggest permit fossil energy-saving technical change without hampering productivity growth.
机译:概述 减轻气候变化的挑战给各国经济带来了挑战,即在减少化石能源消耗的同时提高生产率。化石节能技术变革被认为可以实现这一目标,但缺乏经验证据(Bowen&Hepburn 2014)。在没有基础生产理论和技术变革的情况下,试图通过计量经济学确定产量与化石能源使用之间关系的实证研究发现了相互矛盾的发现(例如,Ozturk,2010; Wagner,2008)。结果倾向于对方法,样本量和选择的目标敏感。从经济增长和技术变革的经济模型开始的实证研究发现有关价格变动与技术变革的速率和方向之间的相关性的合理结果,但由于缺乏诸如能源等数据,往往只报告单个或少数高收入国家的结果。较长时间范围或许多国家的价格(Hassler等,2012)。由于各国经济紧密整合到全球贸易网络中,导致国家经济结构的变化,其能源强度也不同,因此无法将生产中使用的能源国家模式用于推断世界范围的关系。 本文研究了世界经济在化石能源和劳动力方面技术变革的速度和方向之间的长期关系。在1950年至2012年之间,研究了95%以上的世界产出的劳动生产率和化石能源-劳动比率的增长率。相对于劳动生产率,能源-劳动比率的平均弹性接近于1,这意味着高能使用技术变更,但在要素生产率增长率之间没有权衡取舍。这种典型的事实表明,廉价,充足的能源供应对于全球强劲增长至关重要,对于可再生能源也至关重要。当前政府间气候变化专门委员会报告中的综合评估模型并未在其基准情景中纳入这一限制,这引发了人们对其过渡路径预测的经验基础的质疑。 第2节回顾了过去能源强度趋势的经验文献,无论是否涉及经济生产,并解释了这种分析所基于的简单能源生产模型。第三部分描述了数据集的构造方式,并详细介绍了分析方法。第4节介绍了在国家增长率的横截面以及区域增长率的时间序列中对技术变化的速度和方向的相关性进行分析的结果。还分析了混合物中可再生能源对化石能源方向的影响。第5节在综合评估模型中讨论了结果对当前政策和未来经济增长情景的影响。第六部分总结了结果并确定了有前途的研究途径。 方法 产出和就业数据来自总经济数据库,基于安格斯·麦迪森(Angus Maddison)的估计(会议委员会,2015年)。化石能源数据来自1970年后国际能源机构(IEA)的非住宅化石能源消费量,以及Darmstadter等人的数据。 (1971)用于1950-1968年期间的一次化石能源消耗。分析方法是定性和定量的。对横截面的复合年增长率和时间序列的散点图的可视化分析确定了长期模式;离群值是根据其时期的历史经济背景进行分析的。线性和局部加权多项式回归(黄土)产生弹性估计值,以及生产率增长和技术变革方向之间的线性关系占主导地位的域,面板估计值测试横截面相关性对未观察到的异质性的稳健性。 结果 1)在复合年均增长率横截面中,化石能源劳动比率相对于劳动生产率的国家弹性在一个很大的劳动生产率范围内已经接近于一,并且在大部分样本中;换句话说,在相似的能量强度变化速率下,已经实现了不同的劳动生产率。既没有在多个单要素生产率之间进行“创新可能性前沿”折衷,也没有实现快速的“脱钩”增长。 2)这种模式在1950-70年代和2000年以后都保持着惊人的恒定性;在1980年代,以及在较小程度上,在1990年代,不同的技术变革机制在一定程度上解释了由于两次欧佩克危机导致对更高的能源价格的调整以及以前的社会主义经济的转型。具有国家和时间固定影响的小组估算证实了这种关系。 3)最近用低碳能源替代化石能源已经降低了弹性,η,而不会对劳动生产率的增长产生重大影响。 结论 结果表明,从历史上看,规模经济的劳动生产率增长更快,同时化石能源消耗技术的变化与世界经济的增长速度相近。在过去的六十年中,这种关系的稳健性表明生产力增长与化石能源-劳动力比率之间关系的一个“程式化事实”。由于其在“脱钩”增长中的核心地位,温室气体与经济增长的综合模型应将其纳入其中。 由于石油输出国组织(OPEC)危机和计划从市场过渡到市场的冲击,我们将1980年代和90年代选为例外,这在某种程度上解释了从1971年(IEA数据)或1980年(美国能源信息管理局(Energy Information Administration)数据),大多数现有的计量经济学分析都使用了该数据。这也引发了有关综合评估模型中外推的问题,这些模型的历史趋势通常基于1970-2010年,其中二十年由于“冲击”而被视为例外,而“冲击”是政策无法复制的。此外,他们对全球未来劳动生产率和能源强度变化率的预测并未反映历史数据中确定的限制。 在国家一级,成功的国家发展经历了很高的能源消耗,这表明未来的经济发展和增长将需要依靠廉价和丰富的能源供应。这表明了低成本低碳能源的重要性,数据表明可以在不影响生产率增长的情况下进行化石节能技术变革。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号