首页> 外文会议>IAEE international conference;International Association for Energy Economics >ASSESSING HYDROPOWER VULNERABILITY UNDER UNCERTAIN CLIMATE CHANGE IN DEVELOPING COUNTRIES: CASE OF ECUADOR
【24h】

ASSESSING HYDROPOWER VULNERABILITY UNDER UNCERTAIN CLIMATE CHANGE IN DEVELOPING COUNTRIES: CASE OF ECUADOR

机译:在不确定的气候变化下评估发展中国家的水电脆弱性:厄瓜多尔案例

获取原文

摘要

OverviewClimate change will impact natural and human systems, specially energy systems and the technologies that are mostdependant or exposed to climate variations (DOE, 2015). Hydropower is one of the most vulnerable systems toclimate change due to its dependence on the hydrological cycle in which temperature and precipitation are dominantdrivers. This leads to energy security concerns in countries that are highly dependant on this technology, specially indeveloping regions such as Africa, Asia and South America where there has been a recent upsurge in hydropowerinfrastructure (WEC, 2015). Energy system models that usually consider deterministic and constant hydro-climaticconditions collide with climate change uncertainty and the myriad of possible scenarios that result from differentclimate modelling exercises. This underlines the challenge of incorporating impacts of hydro-climatic change intothese models due to its inherent uncertainty (Shadman, Sadeghipour, Moghavvemi, & Saidur, 2016). This researchintends to present a framework for generation capacity planning that includes climate change uncertainty andtherefore delivers a power generation portfolio that is more robust or adapted to climate change variations. TheRepublic of Ecuador will be used as a case study to apply the framework, since hydropower currently dominates 46per cent of total electricity generation (2014) and there are ambitious investment plans to reach more than 90 percent of hydropower participation in the grid by 2017 (MICSE, 2015). The location of Ecuador also posits interest,i.e. the tropical Andes, which is one of the areas where impacts of climate change are still highly uncertain. Theresults presented in this extended abstract are initial and part of a wider doctoral research project, which will developa TIMES energy system model for Ecuador’s power sector and later on use a mean-variance portfolio theoryapproach to handle uncertainty.MethodsThe proposed methodology consists in a three-step approach, which is depicted in Figure 1. The first step, ‘HydroclimateAnalysis’, uses a statistical hydrological model to assess how inflow into hydropower stations will varyaccording to projections of a large General Circulation Model (GCM) ensemble, namely the Coupled ModelIntercomparison Project 5 (CMIP5), which was used in the latest Assessment Report of the Intergovernmental PanelClimate Change (IPCC-AR5) (Taylor, Stouffer, & Meehl, 2012). This statistical model will be ‘signalled’ by thechanges in temperature and precipitation of the CMIP5. The results of this step are a set of monthly inflow timeseries into Ecuador’s largest hydropower plants. The second step, ‘Energy Modelling’, consists on building aTIMES energy systems optimisation model at a plant-by-plant detail level that represents the current and futurepower system of Ecuador up to 2050 (Loulou & Labriet, 2008). The climate change signalled time series of inflowfrom step one will be used to characterize the availability of hydropower and assess changes in total systemgeneration cost, emissions, etc., according to different generation portfolio options. The optimisation approach of themodel and the time-resolution at a monthly level of hydropower availability will bring insights compared to modelsthat consider constant annual availability factors. The third and final step, ‘Uncertainty Analysis’, seeks to includeuncertainty of climate change projections as additional criteria for assessing the least-cost generation portfoliosobtained in step two. The range of inflow due to different climate change projections from the CMIP5 will be usedas a proxy to parameterise the scenario probability space for hydropower output. This information, additional to thehistoric volatility of fossil fuel prices, will be used as inputs for a mean-variance portfolio theory approach appliedto the power sector as has been initially done by (Awerbuch & Berger, 2003). The outcome of this step is acomparison of different generation portfolio options according not only to their least-cost but to their cost-risk, thisbeing defined as the standard deviation of the portfolio generation cost.ResultsThis first step of the proposed methodology has been applied to assess the inflow to Ecuador’s largest hydropowerstation: Paute-Molino, an 1100MW unregulated run-of-river facility in the southeast of the country. Results for 39GCM models for RCP8.5 and averaged for the last 30years of the century (2071-2100) have been plotted in Figure 2(left panel) and show that the mean of the CMIP5 ensemble (in red) projects an annual increase of inflow of 16%compared to the historic value (in solid black), however mostly during the wet season. The historic standarddeviation is plotted (in black dashed lines) and is much narrower than the projected standard deviation of the CMIP5ensemble (shaded area), meaning that so far there is a wider uncertainty about what the projected inflows could looklike by the end of the century. The individual results of 39 GCM have been also plotted (in light grey dotted lines) and show the discrepancies among the models, some accounting for as much as a 300 per cent increase while othersprojecting a decrease in 80 per cent, as can be seen in Figure 2 (right panel) where projected inflows for ensemblemean and individual GCM have been normalised compared to the historic baseline.Figure 1 Proposed methodology for assessing the impact of uncertain climate change on hydropower generation.Figure 2 Inflow regime for the baseline, each GCM (39) and the ensemble mean projection in the Paute HydropowerStation for the RCP8.6 and for 2071-2100. The left panel shows absolute values and the right panel percentagechanges from the baseline. Shaded area represents the ±1 Standard Deviation of the GCM CMIP5 ensemble.ConclusionsWorking with annual mean availability factors for hydropower in an energy system model to assess a power systemwith large shares of hydropower can mask monthly variations in inflow that can impact the system costsignificantly. Also, working only with the ensemble mean (in red in Figure 1) can mask divergent results fromdifferent GCM projections that are also likely to occur thus denoting the need to give a statistical meaning of theresults obtained from climate modelling exercises. This underlines the importance of including the abundant resultsobtained by climate modellers into the energy system modelling process to be able to assess how climate change canimpact energy systems and define generation portfolios that have lower cost-risk thus being better adapted forclimate change.
机译:概述 气候变化将影响自然和人类系统,特别是能源系统和最先进的技术 依赖或暴露于气候变化(DOE,2015)。水电是最脆弱的系统之一 由于气候变化依赖于温度和降水占主导地位的水文循环,因此气候变化 司机。这导致在高度依赖该技术的国家/地区中对能源安全的担忧,特别是在 非洲,亚洲和南美洲等发展中地区,最近水电激增 基础设施(WEC,2015)。通常考虑确定性和恒定水文气候的能源系统模型 条件与气候变化的不确定性以及因不同而导致的各种可能的情况相冲突 气候模拟练习。这突出了将水文气候变化的影响纳入其中的挑战。 这些模型由于其固有的不确定性(Shadman,Sadeghipour,Moghavvemi,&Saidur,2016)。这项研究 打算为发电能力规划提出一个框架,其中包括气候变化的不确定性和 因此,提供的发电产品组合更健壮或适应气候变化。这 厄瓜多尔共和国将作为案例研究应用该框架,因为水电目前占主导地位46 占总发电量的百分比(2014年),并且制定了雄心勃勃的投资计划,要达到90%以上 到2017年,水电参与电网的比例将达到50%(MICSE,2015)。厄瓜多尔的地理位置也引起了人们的兴趣, 即热带安第斯山脉,这是气候变化影响仍然高度不确定的地区之一。这 本扩展摘要中呈现的结果是初步的研究,也是更广泛的博士研究项目的一部分,该项目将不断发展。 厄瓜多尔电力部门的TIMES能源系统模型,后来使用均值方差投资组合理论 处理不确定性的方法。 方法 拟议的方法包括三步法,如图1所示。第一步是“水文气候”。 分析”,使用统计水文模型来评估流入水电站的流量将如何变化 根据大型通用循环模型(GCM)集合的预测,即耦合模型 政府间小组最新评估报告中使用了比对项目5(CMIP5) 气候变化(IPCC-AR5)(Taylor,Stouffer和Meehl,2012年)。该统计模型将被 CMIP5的温度和降水的变化。此步骤的结果是一组每月的流入时间 系列到厄瓜多尔最大的水力发电厂。第二步,“能源建模”,包括建立一个 代表当前和未来的工厂详细级别的TIMES能源系统优化模型 厄瓜多尔的电力系统直到2050年(Loulou&Labriet,2008)。气候变化标志着流入的时间序列 从第一步开始,将用于表征水电的可用性并评估整个系统的变化 发电成本,排放等,具体取决于不同的发电投资组合选项。的优化方法 模型以及水电每月可用水平的时间分辨率将带来与模型相比的见解 考虑恒定的年度可用性因素。第三步也是最后一步,“不确定性分析”,旨在包括 气候变化预测的不确定性作为评估最低成本发电投资组合的附加标准 在第二步中获得。将使用由于CMIP5的不同气候变化预测而导致的流入范围 作为代理来设定水电输出情景概率空间的参数。此信息,除了 化石燃料价格的历史波动性,将用作均值方差投资组合理论方法的输入 最初由(Awerbuch&Berger,2003)完成。此步骤的结果是 不仅根据最低成本,而且根据成本风险比较不同代投资组合的选择,这 被定义为投资组合生成成本的标准偏差。 结果 拟议方法的第一步已用于评估流入厄瓜多尔最大水电的流量 电站:Paute-Molino,该国东南部的1100MW非管制河流过流设施。结果39 图2绘制了RCP8.5的GCM模型,并在本世纪的最后30年(2071-2100)进行了平均。 (左图),并表明CMIP5总体平均值(红色)表示每年的流入量将增加16% 与历史价值相比(纯黑色),但是主要是在雨季。历史标准 偏差被绘制(以黑色虚线表示),并且比CMIP5的预计标准偏差要窄得多 合奏(阴影区域),这意味着到目前为止,预计流入量的前景存在更大的不确定性 像到本世纪末。还绘制了39个GCM的单个结果(以浅灰色虚线表示),并显示了模型之间的差异,其中一些占300%的增加,而另一些占300%的增加。 预计减少80%,如图2(右图)所示,预计整体的流入量 与历史基线相比,均值和个体GCM已标准化。 图1建议的方法,用于评估不确定的气候变化对水力发电的影响。 图2基线,每个GCM(39)以及流入Paute水电的总体平均投影的入流情况 RCP8.6和2071-2100的工作站。左面板显示绝对值,右面板百分比 从基线开始发生变化。阴影区域表示GCM CMIP5整体的±1标准偏差。 结论 在能源系统模型中使用水电的年平均可用因子来评估电力系统 水力发电量较大的地区,可以掩盖每月流入量的变化,从而影响系统成本 显着地。同样,仅使用集合均值(图1中的红色)可以掩盖来自 也可能会发生不同的GCM预测,因此需要给出统计上的意义 从气候模拟练习中获得的结果。这强调了包括丰富结果的重要性 气候建模者将其获取到能源系统建模过程中,以便能够评估气候变化如何 影响能源系统并定义具有较低成本风险的发电产品组合,从而更好地适应 气候变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号