首页> 外文会议>International conference on advanced data mining and applications >Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints
【24h】

Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints

机译:具有低秩和自表示约束的无监督超图特征选择

获取原文

摘要

Unsupervised feature selection is designed to select a subset of informative features from unlabeled data to avoid the issue of 'curse of dimensionality' and thus achieving efficient calculation and storage. In this paper, we integrate the feature-level self-representation property, a low-rank constraint, a hypergraph regularizer, and a sparsity inducing regularizer (i.e., an ℓ_(2,1)-norm regularizer) in a unified framework to conduct unsupervised feature selection. Specifically, we represent each feature by other features to rank the importance of features via the feature-level self-representation property. We then embed a low-rank constraint to consider the relations among features and a hypergarph regularizer to consider both the high-order relations and the local structure of the samples. We finally use an ℓ_(2,1) -norm regularizer to result in low-sparsity to output informative features which satisfy the above constraints. The resulting feature selection model thus takes into account both the global structure of the samples (via the low-rank constraint) and the local structure of the data (via the hypergraph regularizer), rather than only considering each of them used in the previous studies. This enables the proposed model more robust than the previous models due to achieving the stable feature selection model. Experimental results on benchmark datasets showed that the proposed method effectively selected the most informative features by removing the adverse effect of redundantosiy features, compared to the state-of-the-art methods.
机译:无监督特征选择旨在从未标记的数据中选择信息特征的子集,以避免出现“维数诅咒”,从而实现高效的计算和存储。在本文中,我们将特征级自我表示属性,低秩约束,超图正则化器和稀疏诱导正则化器(即ℓ_(2,1)-范数正则化器)集成到一个统一的框架中进行无监督功能选择。具体来说,我们用其他要素表示每个要素,以通过要素级别的自我表示属性对要素的重要性进行排名。然后,我们嵌入了一个低阶约束来考虑特征之间的关系,并嵌入了一个超字形正则化器来同时考虑样本的高阶关系和局部结构。最后,我们使用ℓ_(2,1)-范数正则化器来产生低稀疏性,以输出满足上述约束的信息特征。因此,最终的特征选择模型会同时考虑样本的整体结构(通过低秩约束)和数据的局部结构(通过超图正则化器),而不是仅考虑先前研究中使用的每个样本。由于实现了稳定的特征选择模型,这使得所提出的模型比以前的模型更具鲁棒性。在基准数据集上的实验结果表明,与最新方法相比,该方法通过消除冗余/嘈杂特征的不利影响,有效地选择了最具信息量的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号