首页> 外文会议>World biomaterials congress >Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly(dimethylsiloxane)
【24h】

Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly(dimethylsiloxane)

机译:聚二甲基硅氧烷激光烧蚀微孔中细胞聚集体的超高通量生成和表征

获取原文

摘要

Introduction: Aggregates of cells, also known as multicellular aggregates (MCAs), have been used as microscale tissues in the fields of cancer biology, regenerative medicine, and developmental biology for many decades. However, small MCAs (fewer than 100 cells per aggregate) have remained challenging to manufacture in large quantities at high uniformity. Forced aggregation into microwells offers a promising solution for forming consistent aggregates, but commercial sources of microwells are expensive, complicated to manufacture, or lack the surface packing densities that would significantly improve MCA production. To address these concerns, we custom-modified a commercial CO2 laser cutter to provide complete control over laser ablation and directly generate microwells in a poly(dimethylsiloxane) (PDMS) substrate. Materials and Methods: We demonstrate a cost-effective CO2 laser ablation system for fabricating microwells in poly(dimethylsiloxane) (PDMS). We achieved this by modifying a relatively inexpensive CO2 laser cutter with an open-source 3D printing microcontroller workflow, a z-axis stage, and a vacuum to prevent ablation debris accumulation. Our system produces microwells in the forms of circular inserts for standard multiwell tissue culture plates, which can be seeded with cells for aggregation in a single pipette step. Computer vision software enabled ultra-high-throughput analysis of aggregates harvested from microwells. Casting of high-fidelity microneedle masters in polyurethane allowed for non-ablative microwell reproduction through replica molding, lowering the technical barrier for implementation in non-technical settings. Results and Discussion: Our customized laser cutter setup was capable of ultra-rapid microwell production speeds (>50,000 microwells/hr) at high areal packing densities (1,800 microwells/cm~2) over large surface areas for cell culture (60 cm2). Variation of the PDMS substrate distance from the laser focal plane during ablation allowed for the generation of microwells with a variety of sizes, contours, and aspect ratios. MCAs of human bone marrow derived mesenchymal stem cells (hMSCs), murine 344SQ metastatic adenocarcinoma cells, and human C4-2 prostate cancer cells were generated in our system with high uniformity within 24 hours. For 344SQ cells, we generated more than 100,000 MCAs with low diameter polydispersity (62.0110.8 μm diameter) when seeding at 25 cells/microwell cell density. Moreover, MCAs formed in our microwell system maintained invasive capabilities in 3D migration assays. 344SQ MCAs demonstrated epithelial lumen formation on Matrige®, and underwent EMT and invasion in the presence of TGF-β. Conclusion: We have improved fabrication of microwells in PDMS by CO2 laser ablation through incorporation of a 3D printing microcontroller system to control a basic commercial laser cutter. Our improved fabrication method gives us the ability to easily generate multicellular aggregates in massive quantities. Open-source hardware, low cost equipment, and low technical requirements equate to ready implementation in other laboratories. We therefore expect our technique for high-throughput fabrication of customized microwell structures will find broad utility in the generation and cultivation of multicellular aggregates for use in regenerative medicine and tumor engineering applications.
机译:简介:细胞聚集体(也称为多细胞聚集体(MCA))已在癌症生物学,再生医学和发育生物学领域用作微型组织。但是,小的MCA(每个聚集体少于100个单元)仍然难以以高均匀度进行大量生产。强制聚集到微孔中为形成一致的聚集体提供了一种有希望的解决方案,但是微孔的商业来源价格昂贵,制造复杂或缺少可以显着提高MCA产量的表面堆积密度。为了解决这些问题,我们定制修改了商用CO2激光切割机,以提供对激光烧蚀的完全控制,并直接在聚二甲基硅氧烷(PDMS)基板上生成微孔。材料和方法:我们展示了一种经济高效的CO2激光烧蚀系统,用于在聚二甲基硅氧烷(PDMS)中制造微孔。我们通过使用开源3D打印微控制器工作流程,z轴工作台和真空来防止烧蚀碎屑积聚来修改相对便宜的CO2激光切割机,从而实现了这一目标。我们的系统为标准多孔组织培养板生产圆形插入物形式的微孔,可在单个移液器步骤中将其接种细胞以进行聚集。计算机视觉软件使从微孔中收集的聚集物的超高通量分析成为可能。在聚氨酯中浇铸高保真微针母模,可以通过仿品成型实现非烧蚀性微孔复制,从而降低了在非技术环境中实施的技术壁垒。结果与讨论:我们定制的激光切割机设置能够在较大的表面积用于细胞培养(60 cm2)的高面积堆积密度(1,800微孔/ cm〜2)下,超快速微孔生产速度(> 50,000微孔/小时)。烧蚀过程中PDMS衬底与激光焦平面的距离变化允许生成具有各种尺寸,轮廓和长宽比的微孔。在我们的系统中,人类骨髓来源的间充质干细胞(hMSCs),鼠类344SQ转移性腺癌细胞和人C4-2前列腺癌细胞的MCA均在24小时内高度均匀地产生。对于344SQ细胞,当以25个细胞/微孔细胞密度播种时,我们产生了超过100,000个具有低直径多分散性(直径为62.0110.8μm)的MCA。此外,在我们的微孔系统中形成的MCA在3D迁移测定中保持了侵入能力。 344SQ MCA表现出在Matrige®上皮腔形成,并在存在TGF-β的情况下经历了EMT和侵袭。结论:通过并入3D打印微控制器系统以控制基本的商用激光切割机,我们通过CO2激光烧蚀改善了PDMS中微孔的制造。我们改进的制造方法使我们能够轻松生成大量的多细胞聚集体。开源硬件,低成本设备和低技术要求相当于可以在其他实验室中立即实施。因此,我们期望用于定制微孔结构的高通量制造的技术将在用于再生医学和肿瘤工程应用的多细胞聚集体的产生和培养中找到广泛的用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号