首页> 外文会议>World biomaterials congress >Design of graphene-like boron nitride/gelatin electro spun nanofibers as new bio nanocomposite material for tissue engineering
【24h】

Design of graphene-like boron nitride/gelatin electro spun nanofibers as new bio nanocomposite material for tissue engineering

机译:石墨烯样氮化硼/明胶电纺纳米纤维的设计作为组织工程的新型生物纳米复合材料

获取原文

摘要

Introduction: Improving the mechanical properties of biopolymers is very essential towards the fabrication of efficient nontoxic material for biomedical applications. To this aim, a novel mechanically stable graphene -like boron nitride (GBN) inorganic filler is introduced. Boron nitride (h-BN) is isoelectric analogue of graphite and exfoliated h-BN (GBN), exhibits very high mechanical properties. Hence the h-BN is exfoliated using the lewis acid base interaction of h-BN and gelatin. GBN/gelatin is used for the fabrication of electrospun mats (ESM) through electrospinning technique. The effect of biomineralization and the toxicity of the ESM with GBN concentration are analyzed. Materials and Methods: Various concentration of h-BN (0.1,1,5% (w/v)) were prepared using 20% of gelatin solution and sonicated for one hour. The solution is centrifuged at 500 rpm for 30 minutes to obtain the stable dispersion of gelatin/GBN in the supernatant. The ESM were fabricated using the stable dispersion of GBN/gelatin using an electrospinning system. Fibers prepared using 20% gelatin were denoted as G and using various h-BN weight fraction, such as 0.1,1 and 5% were referred as 0.1G, 1G 5G respectively. The electrospun mats were further cross-linked with 1% glutaradehyde, neutralized with 10% glycine solution and denoted as GC, 0.1GC, 1GC, 5GC. Results and Discussion: The X-ray diffraction patterns of ESM (figure 1 c) shows 2 peaks at 28= 26.6° and 55° corresponds to (002) and (004) planes of h-BN respectively. The peaks observed at 2G= 41.49°, 43.72° and 50° that corresponds to (100), (101) and (102) planes of h-BN respectively, disappears evidences of the efficient exfoliation of h-BN in ESMR The Fourier transform infrared of ESM are showed in (figure (1 (a,b)). Characteristic peaks of amide Ⅰ, Ⅱ and Ⅲ demonstrates the presence of gelatin chains. The shift in the symmetric stretching of carboxylates from 1406 to 1385cm-1 in 1G, 5G and broadening of carboxylate symmetry stretching in 0.1 G, 1G, and 5G respectively, depicts that carboxylates have strong interaction with the graphene like boron nitride nano-sheets and this interaction facilitates the exfoliation of BN. The tensile strength studies of cross linked ESM shows, the uniform reinforcement of Gelatin by the exfoliated GBN and hence the improvement of the young's modulus from 612 MPa to 1305 MPa. Beyond the optimal concentration of h-BN, GBN causes imperfect reinforcement and leads to sudden decrease to 218 MPa of young's modulus. The biomineralization in simulated body fluids evidences the formation of bone like apatite with the increasing of the GBN concentration. The ceil viability and alkaline phosphatase activity to Human HOS osteosarcoma cell lines evidences that addition of h-BN and the exfoliation into GBN does not affect the biocompatibility of gelatin. Conclusion: The h-BN is exfoliated into GBN using gelatin. GBN reinforced ESM were fabricated by electrospinning technique. The optimal concentration of GBN in ESM enhanced the mechanical properties and bone like apatite forming ability of the bionanocomposites. The ESM is nontoxic to osteoblast cell lines and possess alkaline phosphatase activity. Hence the ESM are highly suitable new class of bionanomaterial for orthopaedic application.
机译:简介:改善生物聚合物的机械性能对于制造用于生物医学应用的有效无毒材料非常重要。为了该目的,引入了新型的机械稳定的类石墨烯状氮化硼(GBN)无机填料。氮化硼(h-BN)是石墨和脱落的h-BN(GBN)的等电模拟物,具有很高的机械性能。因此,利用h-BN和明胶的路易斯酸碱相互作用剥去h-BN。 GBN /明胶通过静电纺丝技术用于制造电纺垫(ESM)。分析了生物矿化的影响以及ESM在GBN浓度下的毒性。材料和方法:使用20%的明胶溶液制备各种浓度的h-BN(0.1,1.5%(w / v))并超声处理一小时。将溶液以500 rpm离心30分钟,以获得上清液中明胶/ GBN的稳定分散体。 ESM是使用电纺丝系统使用GBN /明胶的稳定分散液制成的。使用20%明胶制备的纤维表示为G,使用各种h-BN重量分数(例如0.1,1和5%)分别表示的纤维为0.1G,1G 5G。将电纺垫进一步与1%戊二醛交联,用10%甘氨酸溶液中和,分别表示为GC,0.1GC,1GC,5GC。结果与讨论:ESM的X射线衍射图(图1c)在28 = 26.6°和55°处显示2个峰,分别对应于h-BN的(002)和(004)平面。在2G = 41.49°,43.72°和50°观察到的峰分别对应于h-BN的(100),(101)和(102)平面,消失了ESMR中h-BN有效剥落的证据傅里叶变换(图(1(a,b))中显示了ESM的红外图。酰胺Ⅰ,Ⅱ和Ⅲ的特征峰表明存在明胶链。在1G中,羧酸盐的对称拉伸从1406扩展到1385cm-1。 5G和分别在0.1 G,1G和5G中扩展的羧酸盐对称性扩展表明,羧酸盐与石墨烯具有像氮化硼纳米片一样的强烈相互作用,并且这种相互作用促进BN的剥离。剥落的GBN均匀地增强了明胶的强度,因此将杨氏模量从612 MPa提高到了1305 MPa。超出h-BN的最佳浓度,GBN导致不完善的增强作用并导致杨氏模量突然降低到218 MPa。这模拟体液中的生物矿化表明,随着GBN浓度的增加,会形成类似磷灰石的骨。对人HOS骨肉瘤细胞系的细胞生存力和碱性磷酸酶活性表明,添加h-BN和向GBN剥落不会影响明胶的生物相容性。结论:使用明胶将h-BN剥落成GBN。采用静电纺丝技术制备了GBN增强的ESM。 ESM中GBN的最佳浓度增强了生物纳米复合材料的机械性能和骨样磷灰石形成能力。 ESM对成骨细胞系无毒,并具有碱性磷酸酶活性。因此,ESM是非常适合骨科应用的新型生物纳米材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号