首页> 外文会议>World biomaterials congress >In vitro degradation behavior of functionalized cellulosic fibers reinforced PLA composite
【24h】

In vitro degradation behavior of functionalized cellulosic fibers reinforced PLA composite

机译:功能化纤维素纤维增强PLA复合材料的体外降解行为

获取原文

摘要

Cellulosic fibers are renewable and also light in weight which make them a good candidate as reinforcing elements in bio-composites. Having hydrophilic nature resulted by presence of hydroxyl groups in the structure of these fibers restricts their application in the polymeric matrices because of poor interfacial adhesion, and the low dispersion within the matrix. To resolve these problems this study tried firstly to functionalize the flax fibers with selective oxidation. This improves the adhesion of subsequent amphiphilic TiO2 thin films created by Sol-Gel technique. The PLA matrices were reinforced by using non/functionalized, TiO2/ non -coated flax fibers. The composites were conditioned in simulated body solution at 37°C to induce the degradation. The behaviour of the PLA/glass composite has been analysed during its degradation in simulated physiological condition. Physical and mechanical properties of the composites and the interfacial strength between the matrix and the fibers were characterized quantitatively and qualitatively. The results showed better interfacial properties within functionalized flax fiber reinforced composites comparing to non-functionalized ones. Functionalized TiO2 coated flax reinforced composites showed better mechanical properties within the first 15 weeks of conditioning comparing to the control samples.
机译:纤维素纤维是可再生的,而且重量轻,使其成为生物复合材料中增强元素的理想选择。这些纤维的结构中由于羟基的存在而具有亲水性,这是由于它们差的界面粘合性以及在基质中的低分散性限制了它们在聚合物基质中的应用。为了解决这些问题,本研究首先尝试通过选择性氧化功能化亚麻纤维。这提高了随后通过Sol-Gel技术制成的两亲性TiO2薄膜的附着力。通过使用非/功能化的TiO2 /非涂层亚麻纤维增强PLA基质。将复合材料在模拟人体溶液中于37°C预处理,以诱导降解。在模拟生理条件下降解PLA /玻璃复合材料的过程中,已经对其行为进行了分析。定量和定性地表征了复合材料的物理和机械性能以及基体与纤维之间的界面强度。结果表明,与未官能化的亚麻纤维增强复合材料相比,官能化的亚麻纤维增强复合材料具有更好的界面性能。与对照样品相比,功能化的TiO2涂层亚麻增强复合材料在调理的前15周内显示出更好的机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号