首页> 外文会议>World biomaterials congress >Formation of in situ hemostatic sealant membrane by mussel-inspired adhesive polymers
【24h】

Formation of in situ hemostatic sealant membrane by mussel-inspired adhesive polymers

机译:贻贝启发性粘合剂聚合物形成原位止血密封膜

获取原文

摘要

Introduction: Hemostasis of unexpected massive bleeding frequently occurred in surgical procedures that causes early death by trauma or infectious complications is a challenging issue. Although hemostatic materials are being extensively developed, arresting penoperative bleeding of patients with no or delayed capability of hemostasis such as hemophilia, anemia, diabetes, and thrombocytopenia is a difficult task. Herein, we reported a novel design principle of hemostats for delayed hemostasis or coagulopathy by instant formation of adhesive sealant membrane. We unexpectedly observed that chitosan-catechol formed porous membranes in blood plasma at the early stage, and then blood protein barriers were formed by interactions of chitosan-catechol and blood proteins. Thromboelastography of patient cases also implied that successful hemostasis caused by complexation of chitosan-catechol and blood proteins. Our results demonstrate that these chitosan-catechol hemostatic materials robustly arrest the bleeding for all patients regardless of their medical history and safely use in surgical procedures. Materials and Methods: Chitosan-catechol was synthesized using standard EDC chemistry. Briefly, chitosan (3 g, 19.48 mmol) was dissolved in pH 5 HCl solutions (100 mL). HCA (2.37 g, 15.58 mmol) and EDC (2.02 g, 10.54 mmol) were dissolved in deionized and distilled water (DDW, 25 mL), respectively, and then both were slowly added to the chitosan solution. Ethanol (50 mL) was used as a co-solvent to prevent the possible precipitations during EDC coupling reaction. After 12 hrs, the product was purified by membrane dialysis (MWCO: 12,000-14,000, SpectraPor, USA) against pH 4.0 NaCl solutions for 2 days and DDW for 4 h, and then freeze-dried. Results and Discussions: We found that chitosan-catechol formed porous membranes instantly upon adding the solution to blood plasma. Briefly, we obtained blood plasma by the centrifugation, and then chitosan-catechol solutions (0.5 wt%) were dropped into the blood plasma (Figure 1 A). Chitosan-catechol immediately formed porous membrane (Figures 1B, left). Fig. 1. Formation of chitosan-catechol/blood plasma protein sealant membranes. In contrast, we could not observe the membrane formation when using chemically unmodified chitosan (Figure 1B, right) demonstrating that the conjugation of catechol showed clearly different behaviors at a molecular level. From these results, we designed an experiment to reveal the interactions between chitosan-catechols and biomacromolecules in human bloods kinetically. To monitor the morphological changes of bead formation, we prepared chitosan-catechol beads in blood plasma at a pre-determined time interval. As shown in Figure 1C, micro-porous membranes by chitosan-catechol/blood plasma complexation were obtained. The membrances were formed within 3 min. In case of chitosan-catechol beads after 12 hr incubations, a stiff film was formed at outside by further protein complexation. Unlike the mechanism of hemostatic action of fibrin-based glues, chitosan-catechol rapidly adhered to hemorrhage sites and immediately arrested the bleeding by forming blood protein barriers.. Conclusion: The hemostatic material, chitosan-catechol, is expected to provide effective hemostasis for preventing bleedings for patients such as hemophila, anemia, thrombocytopenia, liver transplantation and etc.
机译:简介:意外的大量出血的止血在外科手术中经常发生,导致创伤或感染性并发症导致早期死亡是一个具有挑战性的问题。尽管止血材料得到了广泛的开发,但是要阻止没有止血能力或具有止血能力如血友病,贫血,糖尿病和血小板减少症的患者的术中出血是一项艰巨的任务。在这里,我们报道了通过立即形成粘合密封膜来止血或凝血病的止血剂的新型设计原理。我们出乎意料地观察到,壳聚糖-邻苯二酚在早期在血浆中形成多孔膜,然后通过壳聚糖-邻苯二酚和血液蛋白的相互作用形成了血液蛋白屏障。病人的血栓弹力造影也暗示成功的止血是由壳聚糖-邻苯二酚和血液蛋白的复合引起的。我们的结果表明,这些壳聚糖-邻苯二酚止血材料可有效阻止所有患者的出血,无论其病史和在手术过程中的安全使用。材料和方法:壳聚糖-邻苯二酚是使用标准EDC化学方法合成的。简而言之,将脱乙酰壳多糖(3g,19.48mmol)溶解在pH 5 HCl溶液(100mL)中。将HCA(2.37 g,15.58 mmol)和EDC(2.02 g,10.54 mmol)分别溶解在去离子水和蒸馏水(DDW,25 mL)中,然后将两者缓慢加入壳聚糖溶液中。乙醇(50 mL)用作助溶剂,以防止在EDC偶联反应过程中可能发生沉淀。 12小时后,将产品通过膜透析(MWCO:12,000-14,000,SpectraPor,美国)针对pH 4.0 NaCl溶液纯化2天,并用DDW纯化4 h,然后冷冻干燥。结果与讨论:我们发现,将壳聚糖-邻苯二酚添加到血浆后立即形成多孔膜。简而言之,我们通过离心获得血浆,然后将壳聚糖-邻苯二酚溶液(0.5 wt%)滴入血浆中(图1 A)。壳聚糖-邻苯二酚立即形成多孔膜(图1B,左)。图1.壳聚糖-邻苯二酚/血液血浆蛋白密封膜的形成。相反,当使用未经化学修饰的壳聚糖时,我们无法观察到膜的形成(图1B,右),表明邻苯二酚的结合在分子水平上表现出明显不同的行为。根据这些结果,我们设计了一个实验来揭示壳聚糖-邻苯二酚和生物大分子在人体血液中的相互作用。为了监测珠形成的形态变化,我们以预定的时间间隔在血浆中制备了壳聚糖-邻苯二酚珠。如图1C所示,通过壳聚糖-邻苯二酚/血液血浆复合获得微孔膜。膜在3分钟内形成。如果孵育12小时后有壳聚糖-邻苯二酚珠,则通过进一步的蛋白质复合作用在外部形成坚硬的膜。不同于纤维蛋白胶的止血作用机理,壳聚糖-邻苯二酚会迅速粘附在出血部位,并通过形成血液蛋白屏障而立即阻止出血。结论:壳聚糖-邻苯二酚的止血材料有望提供有效的止血作用,以预防血友病,贫血,血小板减少症,肝移植等患者的出血

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号