首页> 外文会议>World biomaterials congress >A shape-controlled tunable microgel cell delivery platform for low-dose delivery of primed stem cells for in vivo therapeutic neovascularization
【24h】

A shape-controlled tunable microgel cell delivery platform for low-dose delivery of primed stem cells for in vivo therapeutic neovascularization

机译:形状控制的可调微凝胶细胞递送平台,用于低剂量递送引发的干细胞,用于体内治疗性新血管形成

获取原文

摘要

Introduction: Hydrogel-based cell delivery platforms fabricated from synthetic or natural polymers have evolved from a cytoprotective design to a functional biomaterial design, which not only offers better cell survival but also modulates cellular behaviour via intrinsic biophysical or biochemical cues. Tissue regenerative processes are driven by reparative mesenchymal stem cells (MSCs) under the influence of biochemical cues dictated by the microenvironment. Prolonged ischemia and lack of blood supply drive cellular apoptosis and tissue death. However, delivery of primed stem cells via a tunable microenvironment triggers an 'angiocrine' response, driving therapeutic angiogenesis. Hence, in this study, it is hypothesised that delivery of primed human mesenchymal stem cells on a shape-controlled microgel platform at a low-cell dose promotes angiogenesis in a murine model of hind-limb ischemia (HLI). The specific objectives of the study were to investigate the cellular behaviour on tunable parameters such as matrix concentration, cross-linker concentration and cell densities and therapeutic efficacy of the optimized group in a hind-limb ischemia model. Materials and Methods: Collagen-based microgels of concentrations 1,2 and 3mg/ml were fabricated by neutralizing type-Ⅰ collagen and dispensing a mixture composed of cells and cross-linker 4S-Star-PEG Mw 10000 KDa (Jenkem Tech, U.S.A) on to a hydrophobic surface. hMSCs at an optimized cell density of 0.8×106 were embedded within the microgels. Cell embedded microgels were tested for changes in morphology by confocal microscopy; protein and gene expression quantitation by multiplex ELISA and gene arrays; and changes in matrix stiffness with atomic force microscopy and confocal microscopy. In vivo experiments were performed in a Balb/c nude hind-limb ischemia mouse model. Animal groups (n=12/group) were PBS; microgels alone; microgels with 50,000 hMSCs; 50,000 and 1,000,000 cells alone. Laser-Doppler perfusion and clinical signs of disease severity were assessed along with molecular evaluation using; multiplex ELISA, gene expression arrays and MALDI-imaging mass spectrometry. Statistical analysis was performed using two-way ANOVA with p<0.05. Results and Discussion: The use of 4S-StarPEG combined with the high surface hydrophobicity allowed gelation after 40 minutes, conferring a spherical shape to the microgels. Over 80% viability and low apoptosis was observed using flow-cytometry. 2mg/ml microgels at 0.8×10~6 cell density showed up-regulation of paracrine factors involved in angiogenesis and distinguishing integrin expression profile (Figure1). AFM analysis revealed insignificant changes in matrix stiffness and unique cell morphology in 2mg/ml microgels compared to 1 and 3mg/ml microgels. Results from the in vivo hind-limb ischemia studies (Figure 2) showed increased blood perfusion, up-regulation of protein and gene markers related to angiogenesis, and changes in glycan environment between the treatment and control groups. Conclusion: Tunable shape-controlled collagen based microgel platform can be used to deliver hMSCs at a low cell dose for angiogenesis in vivo.
机译:简介:由合成或天然聚合物制成的基于水凝胶的细胞递送平台已从细胞保护设计演变为功能性生物材料设计,不仅提供了更好的细胞存活率,而且还通过内在的生物物理或生化线索来调节细胞行为。组织再生过程是由修复性间充质干细胞(MSCs)在微环境指示的生化线索的影响下驱动的。长时间的缺血和血液供应不足会导致细胞凋亡和组织死亡。然而,通过可调节的微环境递送致敏的干细胞会触发“血管分泌”反应,从而驱动治疗性血管生成。因此,在这项研究中,假设以低细胞剂量在形状控制的微凝胶平台上递送引发的人间充质干细胞在后肢缺血(HLI)鼠模型中促进了血管生成。该研究的具体目标是研究后肢缺血模型中可调节参数(例如基质浓度,交联剂浓度和细胞密度)以及优化组的治疗功效的细胞行为。材料和方法:通过中和Ⅰ型胶原并分配由细胞和交联剂4S-Star-PEG Mw 10000 KDa组成的混合物(Jenkem Tech,美国),制备浓度为1,2和3mg / ml的胶原蛋白微凝胶。在疏水表面上。在优化的细胞密度为0.8×106的hMSC中嵌入了微凝胶。通过共聚焦显微镜检查了细胞包埋的微凝胶的形态变化。通过多重ELISA和基因阵列对蛋白质和基因表达进行定量;原子力显微镜和共聚焦显微镜观察基质刚度的变化。在Balb / c裸后肢缺血小鼠模型中进行体内实验。动物组(n = 12 /组)是PBS。单独的微凝胶;具有50,000 hMSC的微凝胶;仅50,000和1,000,000个单元。使用以下方法评估了激光多普勒灌注和疾病严重程度的临床体征,并进行了分子评估:多重ELISA,基因表达阵列和MALDI成像质谱。使用双向方差分析进行统计学分析,p <0.05。结果与讨论:将4S-StarPEG与高表面疏水性结合使用可在40分钟后凝胶化,从而使微凝胶具有球形形状。使用流式细胞仪观察到超过80%的活力和低凋亡。 2mg / ml细胞密度为0.8×10〜6的微凝胶显示出参与血管生成和区分整联蛋白表达谱的旁分泌因子的上调(图1)。 AFM分析显示,与1mg / ml和3mg / ml的微凝胶相比,2mg / ml的微凝胶的基质刚度和独特的细胞形态无明显变化。体内后肢缺血研究的结果(图2)显示,治疗组和对照组之间的血液灌注增加,与血管生成相关的蛋白质和基因标记的上调以及聚糖环境的变化。结论:可调节的基于形状控制的胶原蛋白的微凝胶平台可用于以低细胞剂量递送hMSC,用于体内血管生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号