首页> 外文会议>World biomaterials congress >Cells sense the nanoscale geometry and mechanical properties of their matrix
【24h】

Cells sense the nanoscale geometry and mechanical properties of their matrix

机译:细胞感知其基质的纳米级几何形状和机械性能

获取原文

摘要

The extra-cellular matrix (ECM) provides important cues to direct cell phenotype and stem cell fate. In particular, cell adhesion plays an important role in such sensing of the micro-environment and is modulated by physical properties of matrix, such as stiffness, topography and geometry. Our laboratory focuses on the study of such interactions and the design of biomaterials allowing the control of physical properties of the ECM. Our studies highlight that cells respond differently to nanoscale physical properties than they do to bulk properties and that the two can be designed independently. In order to control the geometry of materials at the nanoscale, we have developed patterning protocols to generate nano-patches and nano-fibres with controlled dimension and promoting cell adhesion. These platforms rely on the extreme protein resistance of some polymer brushes and the ease with which these coatings can be structure to control the geometry of protein patterns at multiple scales, from 100 nm to the millimeter scale. We find that stem cell fate is controlled by such geometry and that this behavior is mediated by changes in cell adhesion and spreading. At the nanoscale, protein recruitment dynamics (studied via live fluorescence microscopy and fluorescence recovery after photobleaching) controls adhesion formation and nanoscale sensing. Our recent studies also highlighted that cells may not feel bulk mechanical properties, at the single cell level, but rather directly sense nanoscale mechanics of the matrix. In some situations, the two may match, but this is not necessarily the case. We use self-assembly processes to control the nanoscale mechanical properties of adhesive protein layers independently of the bulk mechanical properties of the matrix. We study such properties via scanning probe microscopy and rheology and find that cell adhesion correlates with nanoscale properties rather than the bulk. This in turn controls fate decision in stem cells.
机译:细胞外基质(ECM)为指导细胞表型和干细胞命运提供了重要线索。特别地,细胞粘附在微环境的这种感测中起重要作用,并且受基质的物理性质如刚度,形貌和几何形状调节。我们的实验室专注于此类相互作用的研究以及可控制ECM物理特性的生物材料设计。我们的研究强调,细胞对纳米级物理特性的响应与对体积特性的响应不同,并且两者可以独立设计。为了控制纳米级材料的几何形状,我们已经开发出图案化方案,以生成尺寸可控的纳米贴片和纳米纤维,并促进细胞粘附。这些平台依赖于某些聚合物刷对蛋白质的极高抵抗力,以及可以轻松构造这些涂层的结构,以控制从100 nm到毫米级的多个比例的蛋白质图案的几何形状。我们发现,干细胞的命运是由这种几何形状控制的,并且这种行为是由细胞粘附和扩散的变化所介导的。在纳米级,蛋白质募集动力学(通过实时荧光显微镜和光漂白后的荧光恢复研究)控制粘附形成和纳米级感测。我们最近的研究还强调,细胞可能不会在单个细胞水平上感觉到大量的机械性能,而是直接感知基质的纳米级力学。在某些情况下,两者可能会匹配,但不一定是这种情况。我们使用自组装过程来控制粘附蛋白层的纳米级机械性能,而与基质的整体机械性能无关。我们通过扫描探针显微镜和流变学研究了这些性质,发现细胞粘附与纳米性质有关,而不是与体积有关。反过来,这控制了干细胞的命运决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号