首页> 外文会议>World biomaterials congress >Carton-based nanomaterials Interfacing nerve cells emerge as a new family of synergic bio-hybrid systems
【24h】

Carton-based nanomaterials Interfacing nerve cells emerge as a new family of synergic bio-hybrid systems

机译:基于纸箱的纳米材料神经细胞接口是一种新型的协同生物混合系统

获取原文

摘要

Neurobiology increasingly endeavours combining material science, nanotechnology and cell biology to engineer hybrid constructs where a cellular phase and a synthetic phase are merged together and promote novel function to complex bio-systems. Carbon nanotubes (CNTs), due to their physicochemical properties, have played a key role in this contest. With proven in-vitro and in-vivo cellular biocompatibility and the ease of growth or immobilisation on virtually every surfaces, CNTs possess the ability to interact intimately with cellular membranes leading to the emergence of a hybrid organic/inorganic interface between cells and CNTs. Surprisingly, in the case of nerve cells, this hybrid is ultimately responsible of a boost in neuronal activity. This powerful symbiosis, although not entirely understood in its mechanisms, is presumably facilitated by the good matching of CNTs' (nano)dimensionality with cells' membrane and cytoskeletal constituents (e.g. actin and tubulin filaments). The most surprising point is the ability of this local interaction to be translated into cues driving the entire synaptic network development system. Here we exploit the ability to grow CNTs in form of patterns of any arbitrary shape and dimension on a supporting surface in addition to that of decorating the surface of complex supporting scaffolds by CNTs to create innovative hybrid interfaces, in both 2D and 3D fashion. CNT interfaced neurons were characterised in morphology via electron microscopy (EM) and histochemistry while network functionality was described in terms of network activity via calcium imaging analysis. The establishment of a hybrid, CNT coupled, neuronal network opens, for the first time, to the possibility to develop new composite systems where organic and inorganic phases will cooperate together to carry out novel effective functionalities. By a parallel approach we investigated cell-membrane interactions with the artificial materials, to address the core mechanisms instructing cell behaviours.
机译:神经生物学越来越努力地将材料科学,纳米技术和细胞生物学相结合,以设计出混合结构,其中细胞相和合成相融合在一起,并促进复杂生物系统的新功能。碳纳米管(CNTs)由于其物理化学特性,在这场比赛中发挥了关键作用。 CNT具有公认的体外和体内细胞生物相容性,并且易于在几乎所有表面上生长或固定,CNT具有与细胞膜紧密相互作用的能力,从而导致细胞和CNT之间出现杂化的有机/无机界面。出乎意料的是,在神经细胞的情况下,这种杂种最终导致神经元活性的增强。 CNTs(纳米)维数与细胞膜和细胞骨架成分(例如肌动蛋白和微管蛋白细丝)的良好匹配可能促进了这种强大的共生作用,尽管其机理尚不完全清楚。最令人惊讶的一点是,这种本地交互被转换为驱动整个突触网络开发系统的线索的能力。除了利用CNT装饰复杂的支撑支架表面以创建2D和3D方式的创新混合界面之外,我们在这里还利用了在支撑表面上以任意形状和尺寸的图案形式生长CNT的能力。 CNT界面神经元通过电子显微镜(EM)和组织化学在形态学上进行了表征,而网络功能则通过钙成像分析在网络活动方面进行了描述。混合的,CNT耦合的神经元网络的建立首次为开发新的复合系统(有机和无机相将协同作用以执行新的有效功能)的可能性打开了大门。通过平行方法,我们研究了细胞膜与人造材料的相互作用,以解决指导细胞行为的核心机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号